On the $x$-coordinates of Pell equations which are Fibonacci numbers

Authors

  • Florian Luca
  • Alain Togbé

DOI:

https://doi.org/10.7146/math.scand.a-97271

Abstract

For an integer $d>2$ which is not a square, we show that there is at most one value of the positive integer $x$ participating in the Pell equation $x^2-dy^2=\pm 1$ which is a Fibonacci number.

References

Bugeaud, Y., Mignotte, M., and Siksek, S., Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math. (2) 163 (2006), no. 3, 969–1018. https://doi.org/10.4007/annals.2006.163.969

Carmichael, R. D., On the numerical factors of the arithmetic forms $alpha ^npm beta ^n$, Ann. of Math. (2) 15 (1913/14), no. 1-4, 30–70. https://doi.org/10.2307/1967797

Cohn, J. H. E., On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537–540. https://doi.org/10.1112/jlms/s1-39.1.537

Cohn, J. H. E., The Diophantine equation $x^4-Dy^2=1$, Quart. J. Math. Oxford Ser. (2) 26 (1975), no. 1, 279–281. https://doi.org/10.1093/qmath/26.1.279

Cohn, J. H. E., The Diophantine equation $x^4-Dy^2=1$. II, Acta Arith. 78 (1997), no. 4, 401–403. https://doi.org/10.4064/aa-78-4-401-403

Dujella, A. and Pethő, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 3, 291–306. https://doi.org/10.1093/qjmath/49.195.291

Kalman, D. and Mena, R., The Fibonacci numbers—exposed, Math. Mag. 76 (2003), no. 3, 167–181. https://doi.org/10.2307/3219318

Ljunggren, W., Über die unbestimmte Gleichung $Ax^2 - By^4 = C$, Arch. Math. Naturvid. 41 (1938), no. 10, 18.

Ljunggren, W., Über die Gleichung $x^4-Dy^2=1$, Arch. Math. Naturvid. 45 (1942), no. 5, 61–70.

Ljunggren, W., On the Diophantine equation $x^2+4=Ay^4$, Norske Vid. Selsk. Forh., Trondheim 24 (1951), 82–84.

Ljunggren, W., Collected papers of Wilhelm Ljunggren. Vol. 1, 2, Queen's Papers in Pure and Applied Mathematics, vol. 115, Queen's University, Kingston, ON, 2003.

Matveev, E. M., An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180. https://doi.org/10.1070/IM2000v064n06ABEH000314

McDaniel, W. L., The g.c.d. in Lucas sequences and Lehmer number sequences, Fibonacci Quart. 29 (1991), no. 1, 24–29.

Ming, L., On triangular Fibonacci numbers, Fibonacci Quart. 27 (1989), no. 2, 98–108.

Posamentier, A. S. and Lehmann, I., The (fabulous) Fibonacci numbers, Prometheus Books, Amherst, NY, 2007.

Rollett, A. P. and Wyler, O., Advanced Problems and Solutions: Solutions: 5080, Amer. Math. Monthly 71 (1964), no. 2, 220–222.

Published

2018-02-20

How to Cite

Luca, F., & Togbé, A. (2018). On the $x$-coordinates of Pell equations which are Fibonacci numbers. MATHEMATICA SCANDINAVICA, 122(1), 18–30. https://doi.org/10.7146/math.scand.a-97271

Issue

Section

Articles