Quadratic Gröbner bases arising from partially ordered sets

  • Takayuki Hibi
  • Kazunori Matsuda
  • Akiyoshi Tsuchiya


The order polytope $\mathcal {O}(P)$ and the chain polytope $\mathcal {C}(P)$ associated to a partially ordered set $P$ are studied. In this paper, we introduce the convex polytope $\Gamma (\mathcal {O}(P), -\mathcal {C}(Q))$ which is the convex hull of $\mathcal {O}(P) \cup (-\mathcal {C}(Q))$, where both $P$ and $Q$ are partially ordered sets with $|P|=|Q|=d$. It will be shown that $\Gamma (\mathcal {O}(P), -\mathcal {C}(Q))$ is a normal and Gorenstein Fano polytope by using the theory of reverse lexicographic squarefree initial ideals of toric ideals.


Batyrev, V. V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), no. 3, 493–535.

Cox, D. A., Little, J. B., and Schenck, H. K., Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. https://doi.org/10.1090/gsm/124


Hibi, T., Distributive lattices, affine semigroup rings and algebras with straightening laws, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 93--109.

Hibi, T., Algebraic combinatorics on convex polytopes, Carslaw Publications, Glebe, 1992.

Hibi, T. (ed.), Gröbner bases: Statistics and software systems, Springer, Tokyo, 2013. https://doi.org/10.1007/978-4-431-54574-3


Hibi, T. and Li, N., Chain polytopes and algebras with straightening laws, Acta Math. Vietnam. 40 (2015), no. 3, 447–452. https://doi.org/10.1007/s40306-015-0115-2


Hibi, T. and Matsuda, K., Quadratic Gröbner bases of twinned order polytopes, European J. Combin. 54 (2016), 187–192. https://doi.org/10.1016/j.ejc.2015.12.014


Hibi, T., Matsuda, K., Ohsugi, H., and Shibata, K., Centrally symmetric configurations of order polytopes, J. Algebra 443 (2015), 469–478. https://doi.org/10.1016/j.jalgebra.2015.06.010


Hibi, T., Matsuda, K., and Tsuchiya, A., Gorenstein Fano polytopes arising from order polytopes and chain polytopes, preprint arXiv:1507.03221 [math.CO], 2015.

Ohsugi, H. and Hibi, T., Quadratic initial ideals of root systems, Proc. Amer. Math. Soc. 130 (2002), no. 7, 1913–1922. https://doi.org/10.1090/S0002-9939-01-06411-5


Ohsugi, H. and Hibi, T., Centrally symmetric configurations of integer matrices, Nagoya Math. J. 216 (2014), 153–170. https://doi.org/10.1215/00277630-2857555


Ohsugi, H. and Hibi, T., Reverse lexicographic squarefree initial ideals and Gorenstein Fano polytopes, print arXiv:1410.4786 [math.AC], 2014.

Stanley, R. P., Two poset polytopes, Discrete Comput. Geom. 1 (1986), no. 1, 9–23. https://doi.org/10.1007/BF02187680


How to Cite
Hibi, T., Matsuda, K., & Tsuchiya, A. (2017). Quadratic Gröbner bases arising from partially ordered sets. MATHEMATICA SCANDINAVICA, 121(1), 19-25. https://doi.org/10.7146/math.scand.a-26246