A simple sufficient condition for triviality of obstructions in the orbifold construction for subfactors

  • Toshihiko Masuda

Abstract

We present a simple sufficient condition for triviality of obstructions in the orbifold construction. As an application, we can show the existence of subfactors with principal graph $D_{2n}$ without full use of Ocneanu's paragroup theory.

References

Böckenhauer, J. and Evans, D. E., Modular invariants, graphs and α-induction for nets of subfactors. I, Comm. Math. Phys. 197 (1998), no. 2, 361–386. https://doi.org/10.1007/s002200050455

>

Böckenhauer, J. and Evans, D. E., Modular invariants, graphs and α-induction for nets of subfactors. II, Comm. Math. Phys. 200 (1999), no. 1, 57–103. https://doi.org/10.1007/s002200050523

>

Böckenhauer, J. and Evans, D. E., Modular invariants, graphs and α-induction for nets of subfactors. III, Comm. Math. Phys. 205 (1999), no. 1, 183–228. https://doi.org/10.1007/s002200050673

>

Böckenhauer, J., Evans, D. E., and Kawahigashi, Y., On α-induction, chiral generators and modular invariants for subfactors, Comm. Math. Phys. 208 (1999), no. 2, 429–487. https://doi.org/10.1007/s002200050765

>

Evans, D. E. and Gannon, T., Near-group fusion categories and their doubles, Adv. Math. 255 (2014), 586–640. https://doi.org/10.1016/j.aim.2013.12.014

>

Evans, D. E. and Kawahigashi, Y., Orbifold subfactors from Hecke algebras, Comm. Math. Phys. 165 (1994), no. 3, 445–484.

Evans, D. E. and Kawahigashi, Y., Quantum symmetries on operator algebras, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998, Oxford Science Publications.

Goodman, F. M. and Wenzl, H., Littlewood-Richardson coefficients for Hecke algebras at roots of unity, Adv. Math. 82 (1990), no. 2, 244–265. https://doi.org/10.1016/0001-8708(90)90090-A

>

Goto, S., Orbifold construction for non-AFD subfactors, Internat. J. Math. 5 (1994), no. 5, 725–746. https://doi.org/10.1142/S0129167X9400036X

>

Goto, S., Symmetric flat connections, triviality of Loi's invariant and orbifold subfactors, Publ. Res. Inst. Math. Sci. 31 (1995), no. 4, 609–624. https://doi.org/10.2977/prims/1195163917

>

Izumi, M., Application of fusion rules to classification of subfactors, Publ. Res. Inst. Math. Sci. 27 (1991), no. 6, 953–994. https://doi.org/10.2977/prims/1195169007

>

Izumi, M., Subalgebras of infinite $C^*$-algebras with finite Watatani indices. I. Cuntz algebras, Comm. Math. Phys. 155 (1993), no. 1, 157–182.

Izumi, M., Subalgebras of infinite $C^*$-algebras with finite Watatani indices. II. Cuntz-Krieger algebras, Duke Math. J. 91 (1998), no. 3, 409–461. https://doi.org/10.1215/S0012-7094-98-09118-9

>

Izumi, M., The structure of sectors associated with Longo-Rehren inclusions. I. General theory, Comm. Math. Phys. 213 (2000), no. 1, 127–179. https://doi.org/10.1007/s002200000234

>

Jones, V. F. R., Index for subfactors, Invent. Math. 72 (1983), no. 1, 1–25. https://doi.org/10.1007/BF01389127

>

Kawahigashi, Y., On flatness of Ocneanu's connections on the Dynkin diagrams and classification of subfactors, J. Funct. Anal. 127 (1995), no. 1, 63–107. https://doi.org/10.1006/jfan.1995.1003

>

Kawahigashi, Y., Classification of approximately inner automorphisms of subfactors, Math. Ann. 308 (1997), no. 3, 425–438. https://doi.org/10.1007/s002080050083

>

Loi, P. H., On automorphisms of subfactors, J. Funct. Anal. 141 (1996), no. 2, 275–293. https://doi.org/10.1006/jfan.1996.0128

>

Masuda, T., Extension of automorphisms of a subfactor to the symmetric enveloping algebra, Internat. J. Math. 12 (2001), no. 6, 637–659. https://doi.org/10.1142/S0129167X01000988

>

Wenzl, H., Hecke algebras of type $A_n$ and subfactors, Invent. Math. 92 (1988), no. 2, 349–383. https://doi.org/10.1007/BF01404457

>

Xu, F., Orbifold construction in subfactors, Comm. Math. Phys. 166 (1994), no. 2, 237–253.

Xu, F., The flat part of non-flat orbifolds, Pacific J. Math. 172 (1996), no. 1, 299–306.

Xu, F., New braided endomorphisms from conformal inclusions, Comm. Math. Phys. 192 (1998), no. 2, 349–403. https://doi.org/10.1007/s002200050302

>

Published
2017-09-22
How to Cite
Masuda, T. (2017). A simple sufficient condition for triviality of obstructions in the orbifold construction for subfactors. MATHEMATICA SCANDINAVICA, 121(1), 101-110. https://doi.org/10.7146/math.scand.a-26240
Section
Articles