Existence of Positive Solutions for a Class of Variable Exponent Elliptic Systems

  • S. Ala
  • G. A. Afrouzi

Abstract

We consider the system of differential equations \[ \begin{cases} -\Delta_{p(x)}u=\lambda^{p(x)}f(u,v)&\text{in $\Omega$,}\\ -\Delta_{q(x)}v=\mu^{q(x)}g(u,v)&\text{in $\Omega$,}\\ u=v=0&\text{on $\partial\Omega$,}\end{cases} \] where $\Omega \subset\mathsf{R}^{N}$ is a bounded domain with $C^{2}$ boundary $\partial \Omega,1<p(x),q(x)\in C^{1}(\bar{\Omega})$ are functions. $\Delta_{p(x)}u=\mathop{\rm div}\nolimits(|\nabla u|^{p(x)-2}\nabla u)$ is called $p(x)$-Laplacian. We discuss the existence of a positive solution via sub-super solutions.
Published
2016-03-07
How to Cite
Ala, S., & Afrouzi, G. A. (2016). Existence of Positive Solutions for a Class of Variable Exponent Elliptic Systems. MATHEMATICA SCANDINAVICA, 118(1), 83-94. https://doi.org/10.7146/math.scand.a-23298
Section
Articles