Essential Cartan subalgebras of $C^*$-algebras

Authors

  • Jonathan Taylor

DOI:

https://doi.org/10.7146/math.scand.a-160113

Abstract

We define essential Cartan pairs of $C^*$-algebras generalising the definition of Renault [Cartan subalgebras in $C^*$-algebras, Irish Math. Soc. Bull. (2008), no. 61, 29–63] and show that such pairs are given by essential twisted groupoid $C^*$-algebras as defined by Kwaśniewski and Meyer [Essential crossed products by inverse semigroup actions: Simplicity and pure infiniteness, Doc. Math. 26 (2021), 271–335]. We show that the underlying twisted groupoid is effective, and is unique up to isomorphism among twists over effective groupoids giving rise to the essential Cartan pair. We also show that for twists over effective groupoids giving rise to such pairs, the automorphism group of the twist is isomorphic to the automorphism group of the induced essential Cartan pair via explicit constructions.

References

Armstrong, B., Brown, J. H., Orloff Clark, L., Courtney, K., Lin, Y.-F., McCormick, K., and Ramagge, J., The local bisection hypothesis for twisted groupoid $C^*$-algebras, Semigroup Forum 107 (2023), no. 3, 609–623. https://doi.org/https://doi.org/10.1007/s00233-023-10392-9

Bardadyn, K., Kwaśniewski, B., and McKee, A., Banach algebras associated to twisted étale groupoids: simplicity and pure infiniteness, arXiv:2406.05717 https://doi.org/10.48550/arXiv.2406.05717

Bice, T., Sections of Fell bundles over étale groupoids, J. Math. Anal. Appl. 539 (2024), no. 1, part 2, Paper No. 128478, 39 pp. https://doi.org/https://doi.org/10.1016/j.jmaa.2024.128478

Brown, J. H., Fuller, A. H., Pitts, D. R., and Reznikoff, S. A., Graded $C^*$-algebras and twisted groupoid $C^*$-algebras, New York J. Math. 27 (2021), 205–252.

Dixmier, J., Sur certains espaces considérés par M. H. Stone, Summa Bras. Math. 2 (1951), 151–181. https://doi.org/10.24033/bsmf.1545

Exel, R., Non-Hausdorff étale groupoids, Proc. Amer. Math. Soc. 139 (2011), no. 3, 897–907. https://doi.org/10.1090/S0002-9939-2010-10477-X

Exel, R., and Pitts, D. R., Characterizing groupoid $C^*$-algebras of non-Hausdorff étale groupoids, Lecture Notes in Mathematics, 2306, Springer, Cham, 2022. https://doi.org/10.1007/978-3-031-05513-3

Frank, M., Injective envelopes and local multiplier algebras of $C^*$-algebras, Int. Math. J. 1 (2002), no. 6, 611–620.

Frank, M., and Paulsen, V. I., Injective envelopes of $C^*$-algebras as operator modules, Pacific J. Math. 212 (2003), no. 1, 57–69. https://doi.org/10.2140/pjm.2003.212.57

Gonshor, H., Injective hulls of $C^*$ algebras. II, Proc. Amer. Math. Soc. 24 (1970), 486–491. https://doi.org/10.2307/2037393

Hamana, M., Injective envelopes of $C^*$-algebras, J. Math. Soc. Japan 31 (1979), no. 1, 181–197. https://doi.org/10.2969/jmsj/03110181

Kishimoto, A., Outer automorphisms and reduced crossed products of simple $C^*$nobreakdash -algebras, Comm. Math. Phys. 81 (1981), no. 3, 429–435. http://projecteuclid.org/euclid.cmp/1103920327

Komura, F., $^*$-homomorphisms between groupoid $C^*$-algebras, arXiv:2302.10405 https://doi.org/10.48550/arXiv.2302.10405

Kumjian, A., On $C^*$-diagonals, Canad. J. Math. 38 (1986), no. 4, 969–1008. https://doi.org/10.4153/CJM-1986-048-0

Kwaśniewski, B. K., and Meyer, R., Aperiodicity, topological freeness and pure outerness: from group actions to Fell bundles, Studia Math. 241 (2018), no. 3, 257–303. https://doi.org/10.4064/sm8762-5-2017

Kwaśniewski, B. K. and Meyer, R., Noncommutative Cartan $C^*$nobreakdash -subalgebras, Trans. Amer. Math. Soc. 373 (2020), no. 12, 8697–8724. https://doi.org/10.1090/tran/8174

Kwaśniewski, B. K. and Meyer, R., Essential crossed products by inverse semigroup actions: Simplicity and pure infiniteness, Doc. Math. 26 (2021), 271–335. https://doi.org/10.25537/dm.2021v26.271-335

Kwaśniewski, B. K. and Meyer, R., Aperiodicity: the almost extension property and uniqueness of pseudo-expectations, Int. Math. Res. Not. IMRN (2022), no. 18, 14384–14426. https://doi.org/10.1093/imrn/rnab098

Li, X., Every classifiable simple $C^*$-algebra has a Cartan subalgebra, Invent. Math. 219 (2020), no. 2, 653–699. https://doi.org/10.1007/s00222-019-00914-0

Pitts, D. R., Structure for regular inclusions. I, J. Operator Theory 78 (2017), no. 2, 357–416. https://doi.org/10.7900/jot.2016sep15.2128

Pitts, D. R., Normalizers and approximate units for inclusions of $C^*$-algebras, Indiana Univ. Math. J. 72 (2023), no. 5, 1849–1866.

Raad, A. I., Existence and uniqueness of inductive limit Cartan subalgebras in inductive limit $C^*$-algebras, Ph.D. thesis, University of Glasgow, Glasgow, 2021. https://doi.org/10.5525/gla.thesis.82456.

Raad, A. I., A generalization of Renault's theorem for Cartan subalgebras, Proc. Amer. Math. Soc. 150 (2022), no. 11, 4801–4809. https://doi.org/10.1090/proc/16003

Renault, J., A groupoid approach to $ C^*$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, 1980. https://doi.org/10.1007/BFb0091072

Renault, J., Cartan subalgebras in $C^*$nobreakdash -algebras, Irish Math. Soc. Bull. (2008), no. 61, 29–63.

Sims, A., Hausdorff étale groupoids and their $C^*$-algebras, arXiv:1710.10897 https://doi.org/10.48550/arXiv.1710.10897

Taylor, J., Aperiodic dynamical inclusions of $C^*$-algebras, Ph.D. thesis, Georg-August Universität Göttingen, Göttingen, 2022.

Published

2025-10-23

How to Cite

Taylor, J. (2025). Essential Cartan subalgebras of $C^*$-algebras. MATHEMATICA SCANDINAVICA, 131(3). https://doi.org/10.7146/math.scand.a-160113

Issue

Section

Articles