Schatten norms on Hilbert $C^*$-modules via pure states
DOI:
https://doi.org/10.7146/math.scand.a-160044Abstract
Let $(\mathscr {E}, \langle \cdot , \cdot \rangle )$ be a Hilbert $C^*$-module over a $C^*$-algebra $\mathfrak {A}$. The space of adjointable operators on $\mathscr {E}$ is denoted by $\mathcal {L}(\mathscr {E})$. The sets of all states and pure states on $\mathfrak {A}$ are denoted by $\mathcal {S}(\mathfrak {A})$ and $\mathcal {P}( \mathfrak {A})$, respectively. For $\tau \in \mathcal {S}( \mathfrak {A})$, let us define $\mathcal {N}^{\mathscr {E}}_{\tau }:= \lbrace x\in \mathscr {E}:\tau ( \langle x,x\rangle )=0 \rbrace $. The Hilbert completion of $\mathscr {E}/{\mathcal {N}^{\mathscr {E}}_{\tau }}$ is denoted by $\mathscr {E}_{\tau }$. For $T\in \mathcal {L}(\mathscr {E})$, the operator $T_{\mathscr {E}_\tau }\in \mathbb {B}( \mathscr {E}_\tau )$, is defined by $ T_{\mathscr {E}_\tau }(x+\mathcal {N}^{\mathscr {E}}_{\tau })=Tx+\mathcal {N}^{\mathscr {E}}_{\tau }$. In this paper, we show that $\mathscr {E}_{\tau }={\mathscr {E}}/{\mathcal {N}^{\mathscr {E}}_{\tau }}$ when $\mathfrak {A}$ either is a $C^*$-algebra of compact operators or is commutative.
We introduce a quantity in the context of Hilbert $C^*$-modules, denoted by $\pi ^{\mathscr {E}}_k(\cdot )$ for $k\geq 1$. We prove that $\pi ^{\mathscr {E}}_k(T)\leq \sup _{\tau \in \mathcal {P}( \mathfrak {A})}\|T_{\mathscr {E}_\tau }\|_{(k)}\leq {\pi }^{\mathscr {E}^{\sharp }}_k(T_{\mathscr {E}^{\sharp }})$ for every $T\in \mathcal {L}(\mathscr {E})$, where the space $\mathscr {E}^{\sharp }$ is constructed as the extension of $\mathscr {E}$ by the embedding of $\mathfrak {A}$ into its enveloping von Neumann algebra $\mathfrak {A}^{**}$. Thus, the norm $\pi ^{\mathscr {E}}_k(\cdot )$ preserves the Schatten properties, as in Hilbert spaces, particularly when $\pi ^{\mathscr {E}}_k(T) = {\pi }^{\mathscr {E}^{\sharp }}_k(T_{\mathscr {E}^{\sharp }})$ for all $T \in \mathcal {L}(\mathscr {E})$. This equality holds for $\mathscr {E}$ over commutative $C^*$-algebras with a frame. Moreover, it holds for $\mathscr {E}$ over $C^*$-algebras of compact operators.
References
Abedi, S., and Moslehian, M. S., Extensions of the Hilbert-multi-norm in Hilbert $C^*$-modules, Positivity 27 (2023), no. 1, Paper No. 7, 17 pp. https://doi.org/10.1007/s11117-022-00960-8
Abedi, S., and Moslehian, M. S., Power-norms based on Hilbert $C^*$-modules, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 117 (2023), no. 1, Paper No. 7, 17 pp. https://doi.org/10.1007/s13398-022-01341-2
Asadi, M. B., Frank, M., and Hassanpour-Yakhdani, Z., Frame-less Hilbert $rm C^*$-modules, Glasg. Math. J. 61 (2019), no. 1, 25–31. https://doi.org/10.1017/S0017089518000010
Arambašić, L., Irreducible representations of Hilbert $C^*$-modules, Math. Proc. R. Ir. Acad. 105A (2005), no. 2, 11–24. https://doi.org/10.3318/PRIA.2005.105.2.11
bibitem Arveson Arveson, W. B., An invitation to $C^*$-algebras, Graduate Texts in Mathematics, No. 39. Springer-Verlag, New York-Heidelberg, 1976.
Bakić, D., and Guljaš, B., On a class of module maps of Hilbert $C^*$-modules, Math. Commun. 7 (2002), no. 2, 177–192.
Blasco, O., Power-normed spaces, Positivity 21 (2017), no. 2, 593–632. https://doi.org/10.1007/s11117-016-0404-6
Dales, H. G., and Moslehian, M. S., Stability of mappings on multi-normed spaces, Glasg. Math. J. 49 (2007), no. 2, 321–332. https://doi.org/10.1017/S0017089507003552
Dales, H. G. , Daws, M., Pham, H. L., and Ramsden, P., Equivalence of multi-norms, Dissertationes Math. 498 (2014), 53 pp. https://doi.org/10.4064/dm498-0-1
Dales, H. G., and Polyakov, M. E., Multi-normed spaces, Dissertationes Math. 488 (2012), 165 pp. https://doi.org/10.4064/dm488-0-1
Dales, H. G., Laustsen, N. J., Oikhberg, T., and Troitsky, V. G., Multi-norms and Banach lattices, Dissertationes Math. 524 (2017), 115 pp. https://doi.org/10.4064/dm755-11-2016
Frank, M., and Larson, D. R., Frames in Hilbert $C^*$-modules and $C^*$-algebras, J. Operator Theory 48 (2002), no.2 , 273–314.
Tomczak-Jaegermann, N., Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, 38. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.
Kadison, R. V., Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 273–276. https://doi.org/10.1073/pnas.43.3.273
Kittaneh, F., and Kosaki, H., Inequalities for Schatten $p$-norm V, Publ. Res. Inst. Math. Sci. 23 (1987), no. 2, 433–443. https://doi.org/10.2977/prims/1195176547
Lance, E. C., Hilbert $C^*$-modules: A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526206
Manuilov, V. M., and Troitsky, E. V., Hilbert $C^*$-modules, Translated from the 2001 Russian original by the authors. Translations of Mathematical Monographs, 226. American Mathematical Society, Providence, RI, 2005.
Moslehian, M. S., and Abedi, S., Two classes of $C^*$-power-norms based on Hilbert $C^*$-modules, Math. Scand. 130 (2024), 364–382. https://doi.org/10.7146/math.scand.a-143100
Murphy, G. J., $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990.
Nourouzi, K., On the state space of $C^*$-algebras, J. Math. Anal. Appl. 275 (2002), no.1, 161–164. https://doi.org/10.1016/S0022-247X(02)00306-2
Pedersen, G. K., $C^*$-algebras and their automorphism groups, London Mathematical Society Monographs, 14. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1979.
Skeide, M., Generalised matrix $C^*$-algebras and representations of Hilbert modules, Math. Proc. R. Ir. Acad. 100A (2000), no. 1, 11–38.
Stern, A. B., and van Suijlekom, W. D., Schatten classes for Hilbert $C^*$-modules over commutative $C^*$-algebras, J. Funct. Anal. 281 (2021), no. 4, Paper No. 109042, 35 pp. https://doi.org/10.1016/j.jfa.2021.109042