On posets and polytopes attached to arbors

Authors

  • Frédéric Chapoton

DOI:

https://doi.org/10.7146/math.scand.a-159563

Abstract

Starting from the data of an arbor, which is a rooted tree with vertices decorated by disjoint sets, we introduce a lattice polytope and a partial order on its lattice points. We give recursive formulas for various classical invariants of these polytopes and posets, using the tree structure. For linear arbors, we propose a conjecture exchanging the Ehrhart polynomial of the polytope with the Zeta polynomial of the poset for the reverse arbor. The general motivation comes from a transmutation operator acting on $M$-triangles, which should link the posets considered here with some kind of generalized noncrossing partitions and generalized associahedra. We give some evidence for this relationship in several cases, including notably some polytopes, namely halohedra and Hochschild polytopes.

References

Adachi, T., Iyama, O., and Reiten, I., τ-tilting theory, Compos. Math. 150 (2014), no. 3, 415–452. https://doi.org/10.1112/S0010437X13007422

Almeter, J., P-graph associahedra and hypercube graph associahedra, arXiv:2211.02113

Assem, I., Brüstle, T., Charbonneau-Jodoin, G., and Plamondon, P.-G., Gentle algebras arising from surface triangulations, Algebra Number Theory 4 (2010), no. 2, 201–229. https://doi.org/10.2140/ant.2010.4.201

Athanasiadis, C. A., On some enumerative aspects of generalized associahedra, European J. Combin. 28 (2007), no. 4, 1208–1215. https://doi.org/10.1016/j.ejc.2006.02.002

Barvinok, A., Integer points in polyhedra, Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008. https://doi.org/10.4171/052

Baryshnikov, Y., On Stokes sets, New developments in singularity theory (Cambridge, 2000), 65–86, NATO Sci. Ser. II Math. Phys. Chem., 21, Kluwer Acad. Publ., Dordrecht, 2001.

Bateni, A.-H., Manneville, T., and Pilaud, V., On quadrangulations and Stokes complexes, in “Extended abstracts of the ninth European conference on combinatorics, graph theory and applications, EuroComb 2017, Vienna, Austria, August 28 – September 1, 2017”, Amsterdam: Elsevier, 2017, pp. 107–113 . https://doi.org/10.1016/j.endm.2017.06.027

Bergeron, F., Labelle, G., and Leroux, P., Combinatorial species and tree-like structures. Transl. from the French by Margaret Readdy, Encyclopedia of Mathematics and its Applications, 67. Cambridge University Press, Cambridge, 1998.

Berland, H., Owren, B., and Skaflestad, B., $B$-series and order conditions for exponential integrators, SIAM J. Numer. Anal. 43 (2005), no. 4, 1715–1727. https://doi.org/10.1137/040612683

Bessis, D., Finite complex reflection arrangements are (K(pi ,1)), Ann. of Math. (2) 181 (2015), no. 3, 809–904 . https://doi.org/10.4007/annals.2015.181.3.1

Brady, T., and Watt, C., (K(pi ,1))'s for Artin groups of finite type., Geom. Dedicata 94 (2002), 225–250 . https://doi.org/10.1023/A:1020902610809

Chapoton, F., Enumerative properties of generalized associahedra, Sémin. Lothar. Comb. 51 (2004), B51b, 16 pp.

Chapoton, F., Sur le nombre de réflexions pleines dans les groupes de Coxeter finis, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 4, 585–596. http://projecteuclid.org/euclid.bbms/1168957336

Chapoton, F., Stokes posets and serpent nests, Discrete Math. Theor. Comput. Sci. 18 (2016), no. 3, Paper No. 18, 30 pp.

Chapoton, F., A note on gamma triangles and local gamma vectors (with an appendix by Alin Bostan), Ann. Fac. Sci. Toulouse, Math. (6) 29 (2020), no. 4, 907–925 . https://doi.org/10.5802/afst.1649

Chapoton, F., Some properties of a new partial order on Dyck paths, Algebr. Comb. 3 (2020), no. 2, 433–463 . https://doi.org/10.5802/alco.98

Chapoton, F., On a q-analogue of the Zeta polynomial of posets, Preprint, arXiv:2402.11979

Chapoton, F., Fomin, S., and Zelevinsky, A., Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), no. 4, 537–566. https://doi.org/10.4153/CMB-2002-054-1

Combe, C., A geometric and combinatorial exploration of Hochschild lattices. With an appendix by Frédéric Chapoton, Electron. J. Combin. 28 (2021), no. 2, Paper No. 2.38, 29 pp, https://doi.org/10.37236/9929

Combe, C., and Giraudo, S., Three interacting families of Fuss-Catalan posets, Sém. Lothar. Combin. 84B (2020), Art. 22, 12 pp.

Combe, C., and Giraudo, S., Three Fuss-Catalan posets in interaction and their associative algebras, Comb. Theory 2 (2022), no. 1, Paper No. 6, 57 pp. https://doi.org/10.5070/C62156878

Demonet, L., Iyama, O., Reading, N., Reiten, I., and Thomas, H., Lattice theory of torsion classes: beyond τ-tilting theory, Trans. Am. Math. Soc., Ser. B 10 (2023), 542–612. https://doi.org/10.1090/btran/100

Devadoss, S. L., Fehrman, B., Heath, T., and Vashist, A., Moduli spaces of punctured Poincaré disks, Associahedra, Tamari lattices and related structures, 99–117, Progr. Math., 299, Birkhäuser/Springer, Basel, 2012. https://doi.org/10.1007/978-3-0348-0405-9_6

Devadoss, S. L., Heath, T., and Vipismakul, W., Deformations of bordered surfaces and convex polytopes, Notices Amer. Math. Soc. 58 (2011), no. 4, 530–541.

NIST Digital Library of Mathematical Functions, https://dlmf.nist.gov/, Release 1.2.3 of 2024-12-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

Edelman, P. H., Chain enumeration and non-crossing partitions, Discrete Math. 31 (1980), no. 2, 171–180. https://doi.org/10.1016/0012-365X(80)90033-3

Ferroni, L., and Higashitani, A., Examples and counterexamples in Ehrhart theory, arXiv:2307.10852

Fomin, S., and Reading, N., Root systems and generalized associahedra, Geometric combinatorics, 63–131, IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/pcms/013/03

FriCAS team, FriCAS 1.3.11—an advanced computer algebra system, 2024, Available at http://fricas.github.io.

Fried, S., On the coefficients of the distinct monomials in the expansion of $x_1(x_1+x_2)cdots (x_1+x_2+cdots +x_n)$, J. Integer Seq. 25 (2022), no. 4, Art. 22.4.2, 16 pp.

Fulkerson, D. R., Blocking and anti-blocking pairs of polyhedra, Math. Programming 1 (1971), 168–194. https://doi.org/10.1007/BF01584085

Garver, A., and McConville, T., Lattice properties of oriented exchange graphs and torsion classes, Algebr. Represent. Theory 22 (2019), no. 1, 43–78. https://doi.org/10.1007/s10468-017-9757-1

Garver, A., and McConville, T., Chapoton triangles for nonkissing complexes, Algebr. Comb. 3 (2020), no. 6, 1331–1363. https://doi.org/10.5802/alco.142

González D'León, R. S., and Hallam, J., The Whitney duals of a graded poset, J. Combin. Theory Ser. A 177 (2021), Paper No. 105301, 41 pp. https://doi.org/10.1016/j.jcta.2020.105301

Kauers, M., Jaroschek, M., and Johansson, F., Ore polynomials in Sage, Computer algebra and polynomials, 105–125, Lecture Notes in Comput. Sci., 8942, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-15081-9_6

Keller, B., and Demonet, L., A survey on maximal green sequences, Representation theory and beyond, 267–286, Contemp. Math., 758, Amer. Math. Soc., [Providence], RI, [2020], https://doi.org/10.1090/conm/758/15239

Krattenthaler, C., The (F)-triangle of the generalised cluster complex, Topics in discrete mathematics, 93–126, Algorithms Combin., 26, Springer, Berlin, 2006. https://doi.org/10.1007/3-540-33700-8_6

Kreweras, G., Sur les partitions non croisées d'un cycle, Discrete Math. 1 (1972), no. 4, 333–350. https://doi.org/10.1016/0012-365X(72)90041-6

Liu, F., On positivity of Ehrhart polynomials, Recent trends in algebraic combinatorics, 189–237, Assoc. Women Math. Ser., 16, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-05141-9_6

Manneville, T., The serpent nest conjecture for accordion complexes, Eur. J. Comb. 67 (2018), 230–238 . https://doi.org/10.1016/j.ejc.2017.08.005

Manneville, T., and Pilaud, V., Geometric realizations of the accordion complex of a dissection, Discrete Comput. Geom. 61 (2019), no. 3, 507–540. https://doi.org/10.1007/s00454-018-0004-2

Montenegro, C., The fixed point non-crossing partition lattices, preprint, 1993.

Mühle, H., The core label order of a congruence-uniform lattice, Algebra Universalis 80 (2019), no. 1, Paper No. 10, 22 pp. https://doi.org/10.1007/s00012-019-0585-5

Mühle, H., Hochschild lattices and shuffle lattices, European J. Combin. 103 (2022), Paper No. 103521, 31 pp. https://doi.org/10.1016/j.ejc.2022.103521

Murua, A., and Sanz-Serna, J. M., Order conditions for numerical integrators obtained by composing simpler integrators, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 357 (1999), no. 1754, 1079–1100. https://doi.org/10.1098/rsta.1999.0365

Palu, Y., Pilaud, V., and Plamondon, P.-G., Non-kissing complexes and tau-tilting for gentle algebras, Mem. Amer. Math. Soc. 274 (2021), no. 1343. https://doi.org/10.1090/memo/1343

Pilaud, V., and Poliakova, D., Hochschild polytopes, Sém. Lothar. Combin. 91B (2024), Art. 1, 12 pp.

Poliakova, D., Cellular chains on freehedra and operadic pairs, arXiv:2011.11607

Poliakova, D., Freehedra are short, European J. Combin. 124 (2025), Paper No. 104084, 9 pp. https://doi.org/10.1016/j.ejc.2024.104084

Postnikov, A., Permutohedra, associahedra, and beyond, Int. Math. Res. Not. IMRN 2009, no. 6, 1026–1106. https://doi.org/10.1093/imrn/rnn153

Reading, N., Cambrian lattices., Adv. Math. 205 (2006), no. 2, 313–353. https://doi.org/10.1016/j.aim.2005.07.010

Reading, N., Lattice theory of the poset of regions, Lattice theory: special topics and applications. Vol. 2, 399–487, Birkhäuser/Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-44236-5_9

Reiner, V., Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), no. 1-3, 195–222. https://doi.org/10.1016/S0012-365X(96)00365-2

Rivera, M., and Saneblidze, S., A combinatorial model for the free loop fibration, Bull. Lond. Math. Soc. 50 (2018), no. 6, 1085–1101. https://doi.org/10.1112/blms.12202

Rota, G.-C., On the foundations of combinatorial theory. I: Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368 https://doi.org/10.1007/BF00531932

Salvatori, G., $1$-loop amplitudes from the Halohedron, J. High Energy Phys. 2019 (2019), no. 12, 074, 16 pp. https://doi.org/10.1007/jhep12(2019)074

Salvatori, G., and Cacciatori, S. L., Hyperbolic geometry and amplituhedra in $1+2$ dimensions, J. High Energy Phys. 2018, no. 8, 167, 26 pp. https://doi.org/10.1007/JHEP08(2018)167

Saneblidze, S., The bitwisted Cartesian model for the free loop fibration, Topology Appl. 156 (2009), no. 5, 897–910. https://doi.org/10.1016/j.topol.2008.11.002

Schrijver, A., Theory of linear and integer programming., repr. ed., Chichester: Wiley, 1998.

Schröer, J., Atlas of finite-dimensional algebras, on-line, 12 2023.

Shallit, J. O., Problem E2972, Amer. Math. Monthly 89 (1982), no. 9, 698.

Shallit, J. O., and Wells, D. M., E2972. Another appearance of the Catalan numbers., Amer. Math. Monthly 93 (1986), no. 3, 217–218.

Stanley, R. P., Combinatorial reciprocity theorems, Adv. Math. 14 (1974), 194–253. https://doi.org/10.1016/0001-8708(74)90030-9

Stanley, R. P., Catalan numbers, Cambridge University Press, New York, 2015. https://doi.org/10.1017/CBO9781139871495

Stanley, R. P., and Pitman, J., A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom. 27 (2002), no. 4, 603–634. https://doi.org/10.1007/s00454-002-2776-6

The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 10.5), 2025, texttt https://www.sagemath.org.

Published

2025-10-23

How to Cite

Chapoton, F. (2025). On posets and polytopes attached to arbors. MATHEMATICA SCANDINAVICA, 131(3). https://doi.org/10.7146/math.scand.a-159563

Issue

Section

Articles