Families of algebraic and continuous maps to projective space

Authors

  • Alexis Aumonier

DOI:

https://doi.org/10.7146/math.scand.a-158293

Abstract

We explain how results comparing the homology of spaces of algebraic and continuous maps to projective spaces can be leveraged to compare moduli stacks of families of algebraic and continuous maps.

References

Arapura, D., Algebraic geometry over the complex numbers, Universitext. Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-1809-2

Aumonier, A., The topology of spaces of holomorphic maps to projective space, 2024, arXiv.2402.05500 https://doi.org/10.48550/ARXIV.2402.05500

Ayala, D., Homological stability among moduli spaces of holomorphic curves in complex projective space, 2008, arXiv.0811.2274 https://doi.org/10.48550/ARXIV.0811.2274

Cohen, R. L., and Madsen, I., Surfaces in a background space and the homology of mapping class groups, Algebraic geometry—Seattle 2005. Part 1, 43–76, Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009. https://doi.org/10.1090/pspum/080.1/2483932

Earle, C. J., and Eells, J., A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19–43. https://doi.org/10.4310/jdg/1214428816

Ebert, J., The homotopy type of a topological stack, 2009, arXiv.0901.3295 https://doi.org/10.48550/ARXIV.0901.3295

Ebert, J., and Randal-Williams, O., Semisimplicial spaces, Algebr. Geom. Topol. 19 (2019), no. 4, 2099–2150. https://doi.org/10.2140/agt.2019.19.2099

Grothendieck, A., Techniques de construction en géométrie analytique. I. Description axiomatique de l'espace de Teichmüller et de ses variantes, Séminaire Henri Cartan 13 (1960-1961), no. 1, 1–33.

Grothendieck, A., Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, Inst. Hautes Études Sci. Publ. Math. No. 32 (1967), 361 pp. http://www.numdam.org/item?id=PMIHES_1967__32__361_0

Grothendieck, A., and Raynaud, M., Revêtements etales et groupe fondamental (SGA1), Exposé XII, Springer Berlin Heidelberg, 1971. https://doi.org/10.1007/bfb0058656

Hinich, V., and Vaintrob, A., Augmented Teichmüller spaces and orbifolds, Selecta Math. (N.S.) 16 (2010), no. 3, 533–629. https://doi.org/10.1007/s00029-010-0027-x

Jansen, M. Ø., Stratified homotopy theory of topological ∞-stacks: A toolbox, J. Pure Appl. Algebra 228 (2024), no. 11, Paper No. 107710, 28 pp. https://doi.org/10.1016/j.jpaa.2024.107710

Kleiman, S. L., The Picard scheme, 2005, arXiv:math/0504020 https://doi.org/10.48550/ARXIV.MATH/0504020

Lazarsfeld, R., Positivity in algebraic geometry I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48. Springer-Verlag, Berlin, 2004. https://doi.org/10.1007/978-3-642-18808-4

Mostovoy, J., Truncated simplicial resolutions and spaces of rational maps, Q. J. Math. 63 (2012), no. 1, 181–187. https://doi.org/10.1093/qmath/haq031

Segal, G., The topology of spaces of rational functions, Acta Math. 143 (1979), no. 1-2, 39–72. https://doi.org/10.1007/bf02392088

The Stacks Project Authors, Stacks project, https://stacks.math.columbia.edu/, 2025.

Published

2025-10-23

How to Cite

Aumonier, A. (2025). Families of algebraic and continuous maps to projective space. MATHEMATICA SCANDINAVICA, 131(3). https://doi.org/10.7146/math.scand.a-158293

Issue

Section

Articles