Column bounded matrices and Grothendieck's inequalities
DOI:
https://doi.org/10.7146/math.scand.a-158046Abstract
It follows from Grothendieck's little inequality that to any complex $m \times n $ matrix $X$ of column norm at most 1, and an $0 <\varepsilon <1,$ there exist a natural number $l, $ a matrix $C$ in $M_{(m,l)}(\mathbb {C})$ with $(1-\varepsilon)^2I_m \leq CC^* \leq (4/\pi ) (1 + \varepsilon)^2 I_m $ and an $l \times n$ matrix $Z$ with entries in the torus $\mathbb {T},$ such that $X= l^{-(1/2)}CZ.$ Grothendieck's little inequality with the constant $k_G^\mathbb {C} = 4/\pi $ follows from this factorization. Grothendieck's big inequality may be reproduced with the estimate $K_G^\mathbb {C} \leq k_G^\mathbb {C}/(2- k_G^\mathbb {C}).$
References
Aubrun, G., and Szarek, S. J., Alice and Bob meet Banach, The interface of asymptotic geometric analysis and quantum information theory, Mathematical Surveys and Monographs, 223. American Mathematical Society, Providence, RI, 2017. https://doi.org/10.1090/surv/223
Christensen, E., Minimal Stinespring representations of operator valued multilinear maps, J. Operator Theory 89 (2023), no. 2, 587–601.
Christensen, E., Bilinear forms, Schur multipliers, complete boundedness and duality, Math. Scand. 129 (2023), no. 3, 543–569.
Christensen, E., Unique matrix factorizations associated to bilinear forms and Schur multipliers, Linear Algebra Appl. 688 (2024), 215–231. https://doi.org/10.1016/j.laa.2024.02.019
Christensen, E., Some points of view on Grothendieck's inequalities, Linear Algebra Appl. 691 (2024), 196–215. https://doi.org/10.1016/j.laa.2024.03.016
Christensen, E., and Sinclair, A. M., Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), no. 1, 151–181. https://doi.org/10.1016/0022-1236(87)90084-X
Grothendieck, A. Résumé de la théorie metrique de produits tensoriels topologiques, Boll. Soc. Math. São-Paulo 8 (1953), 1–79. Reprinted in Resenhas 2 (1996), 401–480.
Haagerup, U., Decomposition of completely bounded maps on operator algebras, unpublished preprint.
Haagerup, U., A new upper bound for the complex Grothendieck constant, Israel J. Math. 60 (1987), no. 2, 199–224. https://doi.org/10.1007/BF02790792
Palazuelos, C., and Vidick, T., Survey on nonlocal games and operator space theory, J. Math. Phys. 57 (2016), no. 1, 015220, 41 pp. https://doi.org/10.1063/1.4938052
Paulsen, V. I., Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), no. 1, 1–17. https://doi.org/10.1016/0022-1236(84)90014-4
Paulsen, V. I., Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge, 2002.
Pisier, G., Grothendieck's Theorem past and present, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 2, 237–323. https://doi.org/10.1090/S0273-0979-2011-01348-9
Smith, R. R., Completely bounded module maps and the Haagerup tensor product, J. Funct. Anal. 102 (1991), no. 1, 156–175. https://doi.org/10.1016/0022-1236(91)90139-V
Schatten, R., A theory of cross spaces, Annals of Mathematics Studies, No. 26. Princeton University Press, Princeton, NJ, 1950.
Schur, I., Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-–28.
Tsirelson, B. S., Quantum generalizations of Bell's inequality, Lett. Math. Phys. 4 (1980), no. 2, 93–100. https://doi.org/10.1007/BF00417500
Wittstock, G., On matrix order and convexity, Functional analysis: surveys and recent results, III (Paderborn, 1983), 175–188, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland, Amsterdam, 1984. https://doi.org/10.1016/S0304-0208(08)71474-9