The kernel of the Goldberg homomorphism is not finitely generated

Authors

  • Martin Scharlemann

DOI:

https://doi.org/10.7146/math.scand.a-158031

Abstract

Let $M$ be a closed surface not the sphere or projective plane. Goldberg [Math. Scand. 33 (1973) 69–82] defined a natural homomorphism from the $n$-stranded pure braid group of $M$ to the n-fold product of $\pi _1(M)$ and showed that the kernel of the homomorphism is finitely normally generated. Here we show that the kernel is \emph {not} finitely generated. The proof is an elementary application of covering space theory and the geometry of the euclidean or hyperbolic plane.

References

Birman, J. S., Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82. Princeton University Press, Princeton, NJ, 1974.

Biss, D., and Farb, B., Erratum: $mathcal K_g$ is not finitely generated, Invent. Math. 178 (2009), no. 1, 229. https://doi.org/10.1007/s00222-009-0202-x

Church, T., and Farb, B., Infinite generation of the kernels of the Magnus and Burau representations, Algebr. Geom. Topol. 10 (2010), no. 2, 837–851. https://doi.org/10.2140/agt.2010.10.837

Freedman, M., and Scharlemann, M., Powell moves and the Goeritz group, arXiv:1804.05909. https://doi.org/10.48550/arXiv.1804.0590

Goldberg, C. H., An exact sequence of braid groups, Math Scand. 33 (1973) 69–82. https://doi.org/10.7146/math.scand.a-11472

González-Meneses, J., and Paris, L., Vassiliev invariants for braids on surfaces, Trans. Amer. Math. Soc. 356 (2004), no. 1, 219–243 https://doi.org/10.1090/S0002-9947-03-03116-7

Scharlemann, M., Generating the Goeritz group of $S^3$, J. Assoc. Math. Res. 2 (2024), no. 2, 209–335.

Xicoténcatl, M. A., On the pure braid group of a surface, Bol. Soc. Mat. Mexicana (3) 10 (2004), Special Issue, 525–528.

Published

2025-07-22

How to Cite

Scharlemann, M. (2025). The kernel of the Goldberg homomorphism is not finitely generated. MATHEMATICA SCANDINAVICA, 131(2). https://doi.org/10.7146/math.scand.a-158031

Issue

Section

Articles