A classification of van der Waerden complexes with linear resolution
DOI:
https://doi.org/10.7146/math.scand.a-157260Abstract
In 2017, Ehrenborg, Govindaiah, Park, and Readdy defined the van der Waerden complex $\mathsf{vdW}(n,k)$ to be the simplicial complex whose facets correspond to all the arithmetic sequences on the set $\{1,\ldots,n\}$ of a fixed length $k$. To complement a classification of the Cohen–Macaulay van der Waerden complexes obtained by Hooper and Van Tuyl in 2019, a classification of van der Waerden complexes with linear resolution is presented. Furthermore, we show that the Stanley–Reisner ring of a Cohen–Macaulay van der Waerden complex is level.
References
Ehrenborg, R., Govindaiah, L., Park, P. S., and Readdy, M., The van der Waerden complex, J. Number Theory 172 (2017), 287–300. https://doi.org/10.1016/j.jnt.2016.08.012
Herzog, J., and Hibi, T., Monomial ideals, Graduate Texts in Mathematics, vol. 260, Springer-Verlag London, Ltd., London, 2011. https://doi.org/10.1007/978-0-85729-106-6
Hooper, B., and Van Tuyl, A., A note on the van der Waerden complex, Math. Scand. 124 (2019), no. 2, 179–187. https://doi.org/10.7146/math.scand.a-111923
van der Waerden, B., Beweis einer Baudetschen Vermutung, Nieuw Arch. Wisk. 15 (1927), 212–216.