Ambarzumian theorem for quantum graphs with magnetic potential

Authors

  • Alice Brolin

DOI:

https://doi.org/10.7146/math.scand.a-157030

Abstract

A Schrödinger operator on a metric graph is isospectral to the Laplacian if and only if the potential is zero. This result is extended to the case of magnetic Schrödinger operators. We show that if a magnetic Schrödinger operator is isospectral to the Laplacian then the magnetic potential can be eliminated. Even the case of delta couplings at the vertices is considered.

References

Ambarzumian, V., Über eine Frage der Eigenwerttheorie, Z. Physik 53 (1929), 690–695. https://doi.org/10.1007/BF01330827

Berkolaiko, G., and Kuchment, P., Introduction to quantum graphs, Mathematical Surveys and Monographs, 186, Amer. Math. Soc., Providence, RI, 2013. https://doi.org/10.1090/surv/186

Bifulco, P., and Kerner, J., A note on Ambarzumian's theorem for quantum graphs, Arch. Math. (Basel) 123 (2024), no. 1, 95–102, https://doi.org/10.1007/s00013-024-01997-9

Boman, J., Kurasov, P., and Suhr, R., Schrödinger operators on graphs and geometry II. Spectral estimates for $L_1$-potentials and an Ambartsumian theorem, Integral Equations Operator Theory 90 (2018), no. 3, Paper No. 40, 24pp. https://doi.org/10.1007/s00020-018-2467-1

Chernyshenko, A., and Pivovarchik, V., Recovering the shape of a quantum graph, Integral Equations Operator Theory 92 (2020), no. 3, Paper No. 23, 17pp. https://doi.org/10.1007/s00020-020-02581-w

Davies, E. B. An inverse spectral theorem, J. Operator Theory 69 (2013), no. 1, 195–208. https://doi.org/10.7900/jot.2010sep14.1881

Friedlander, L., Extremal properties of eigenvalues for a metric graph, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 199–211, https://doi.org/10.5802/aif.2095

Kurasov, P., Spectral geometry of graphs, Operator Theory: Advances and Applications, 293, Birkhäuser/Springer, Berlin, 2024. https://doi.org/10.1007/978-3-662-67872-5

Kurasov, P., and Naboko, S., Rayleigh estimates for differential operators on graphs, J. Spectr. Theory 4 (2014), no. 2, 211–219. https://doi.org/10.4171/JST/67

Kurasov, P., and Suhr, R., Asymptotically isospectral quantum graphs and generalised trigonometric polynomials, J. Math. Anal. Appl. 488 (2020), no. 1, 124049, 15pp. https://doi.org/10.1016/j.jmaa.2020.124049

Kiss, M., Spectral determinants and an Ambarzumian type theorem on graphs, Integral Equations Operator Theory 92 (2020), no. 3, Paper No. 24, 11pp. https://doi.org/10.1007/s00020-020-02579-4

Nicaise, S., Spectre des réseaux topologiques finis, Bull. Sci. Math. (2) 111 (1987), no. 4, 401–413.

Pivovarchik, V., On Ambarzumian type theorems for tree domains, Opuscula Math. 42 (2022), no. 3, 427–437. https://doi.org/10.7494/opmath.2022.42.3.427

Yang, C.-F. and Xu, X.-C., Ambarzumyan-type theorems on graphs with loops and double edges, J. Math. Anal. Appl. 444 (2016), no. 2, 1348–1358. https://doi.org/10.1016/j.jmaa.2016.07.030

Published

2025-07-22

How to Cite

Brolin, A. (2025). Ambarzumian theorem for quantum graphs with magnetic potential. MATHEMATICA SCANDINAVICA, 131(2). https://doi.org/10.7146/math.scand.a-157030

Issue

Section

Articles