A Cuntz-Krieger uniqueness theorem for Cuntz-Pimsner algebras
DOI:
https://doi.org/10.7146/math.scand.a-156724Abstract
We introduce a property of $C^*$-correspondences, which we call Condition (S), to serve as an analogue of Condition (L) of graphs. We use Condition (S) to prove a Cuntz-Krieger uniqueness theorem for Cuntz-Pimsner algebras and obtain sufficient conditions for simplicity of Cuntz-Pimsner algebras. We also prove that if $\mathcal {Q}$ is a topological quiver with no sinks and $X(\mathcal {Q})$ is the associated $C^*$-correspondence, then $X(\mathcal {Q})$ satisfies Condition (S) if and only if $\mathcal {Q}$ satisfies Condition (L). Finally, we consider several examples to compare and contrast Condition (S) with Schweizer's nonperiodic condition.
References
Carlsen, T. M., Dor-On, A., and Eilers, S., Shift equivalences through the lens of Cuntz-Krieger algebras, Anal. PDE 17 (2024), no. 1, 345–377. https://doi.org/10.2140/apde.2024.17.345
Carlsen, T. M., Kwásniewski, B. K., and Ortega, E., Topological freeness for $C^*$- correspondences, J. Math. Anal. Appl. 473 (2019), no. 2, 749–785. https://doi.org/10.1016/j.jmaa.2018.12.069
Carlsen, T. M., Ortega, E., and Pardo, E. Simple Cuntz-Pimsner rings, J. Algebra 371 (2012), 367–390. https://doi.org/10.1016/j.jalgebra.2012.08.005
Echterhoff, S., Kaliszewski, S., Quigg, J., and Raeburn, I., Naturality and induced representations, Bull. Austral. Math. Soc. 61 (2000), no. 3, 415–438. https://doi.org/10.1017/S0004972700022449
Fowler, N., Muhly, P. S., and Raeburn, I., Representations of Cuntz-Pimsner algebras, Indiana Univ. Math. J. 52 (2003), no. 3, 569–605. https://doi.org/10.1512/iumj.2003.52.2125
Fowler, N., and Raeburn, I., The Toeplitz algebra of a Hilbert bimodule, Indiana Univ. Math. J. 48 (1999), no. 1, 155–181. https://doi.org/10.1512/iumj.1999.48.1639
Kajiwara, T., Pinzari, C., and Watatani, Y., Ideal structure and simplicity of the $C^*$-algebras generated by Hilbert bimodules, J. Funct. Anal. 159 (1998), no. 2, 295–322. https://doi.org/10.1006/jfan.1998.3306
Katsura, T., A class of $C^*$-algebras generalizing both graph algebras and homeomorphism $C^*$-algebras. I. Fundamental results, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287–4322. https://doi.org/10.1090/S0002-9947-04-03636-0
Katsura, T., On $C^*$-algebras associated with $C^*$-correspondences, J. Funct. Anal. 217 (2004), no. 2, 366–401. https://doi.org/10.1016/j.jfa.2004.03.010
T. Katsura, Ideal structure of $C^*$-algebras associated with $C^*$-correspondences, Pacific J. Math. 230 (2007), no. 1, 107–145 https://doi.org/10.2140/pjm.2007.230.107
Kwaśniewski, B. K., and Meyer, R., Aperiodicity, topological freeness and pure outerness: from group actions to Fell bundles, Studia Math. 241 (2018), no. 3, 257–303. https://doi.org/10.4064/sm8762-5-2017
Lance, E. C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526206
Muhly, P. S., and Solel, B., On the simplicity of some Cuntz-Pimsner algebras, Math. Scand. 83 (1998), no. 1, 53–73. https://doi.org/10.7146/math.scand.a-13842
Muhly, P. S., and Solel, B., Corrigendum to: “On the simplicity of some Cuntz-Pimsner algebras”, Math. Scand. 91 (2002), no. 2, 244–246. https://doi.org/10.7146/math.scand.a-14388
Muhly, P. S., and Tomforde, M., Adding tails to $C^*$-correspondences, Doc. Math. 9 (2004), 79–106.
Muhly, P. S., and Tomforde, M., Topological quivers, Internat. J. Math. 16 (2005), no. 7, 693–755. https://doi.org/10.1142/S0129167X05003077
Pimsner, M. V., A class of $C^*$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $Z$, Free probability theory (Waterloo, ON, 1995), 189–212, Fields Inst. Commun., 12, Amer. Math. Soc., Providence, RI, 1997. https://doi.org/10.1090/fic/012/08
Schweizer, J., Dilations of $C^*$-correspondences and the simplicity of Cuntz-Pimsner algebras, J. Funct. Anal. 180 (2001), no. 2, 404–425. https://doi.org/10.1006/jfan.2000.3703