Tropicalization of curve arrangement complements and arroids
DOI:
https://doi.org/10.7146/math.scand.a-156674Abstract
We define arroids as an abstract axiom set encoding the intersection properties of arrangements of curves. The tropicalization of the complement of an arrangement of curves meeting pairwise transversely is shown to be determined by the associated arroid. We give conditions for when the cohomology of the complement of an arrangement is computable using tropical cohomology, and we give criteria for when the complement is a maximal variety in terms of tropical geometry.
References
Aksnes, E., Tropical Poincaré duality spaces, Adv. Geom. 23 (2023), no. 3, 345–370. https://doi.org/doi:10.1515/advgeom-2023-0017
Aksnes, E., Amini, O., Piquerez, M., and Shaw, K., Cohomologically tropical varieties, 2023, arXiv:2307.02945.
Allermann, L., and Rau, J., First steps in tropical intersection theory, Math. Z. 264 (2010), no. 3, 633–670. https://doi.org/10.1007/s00209-009-0483-1
Ambrosi, E., and Manzaroli, M., Betti numbers of real semistable degenerations via real logarithmic geometry, 2022, arXiv:2211.12134.
Amini, O., and Piquerez, M., Hodge theory for tropical varieties, 2020, arXiv:2007.07826. https://doi.org/10.48550/ARXIV.2007.07826
Amini, O., and Piquerez, M., Homology of tropical fans, 2021, arXiv:2105.01504.
Ardila, F., and Klivans, C. J., The Bergman complex of a matroid and phylogenetic trees, J. Combin. Theory Ser. B 96 (2006), no. 1, 38–49. https://doi.org/10.1016/j.jctb.2005.06.004
Brugallé, E., Itenberg, I., Mikhalkin, G., and Shaw, K., Brief introduction to tropical geometry, Proceedings of the Gökova Geometry-Topology Conference 2014, 1–75, Gökova Geometry/Topology Conference (GGT), Gökova, 2015.
Brugallé, E., and Schaffhauser, F., Maximality of moduli spaces of vector bundles on curves, Épijournal Géom. Algébrique 6 (2022), Art. 24, 15pp.
Cueto, M. A., Implicitization of surfaces via geometric tropicalization, 2012, arXiv:1105.0509.
Deligne, P., Théorie de Hodge. I, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 425–430, Gauthier-Villars Éditeur, Paris, 1971.
Dimca, A., Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992. https://doi.org/10.1007/978-1-4612-4404-2
Fulton, W., Introduction to toric varieties, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993 https://doi.org/10.1515/9781400882526
Griffiths, P., and Harris, J., Principles of algebraic geometry, Reprint of the 1978 original. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994. https://doi.org/10.1002/9781118032527
Gross, A., and Shokrieh, F., A sheaf-theoretic approach to tropical homology, J. Algebra 635 (2023), 577–641. https://doi.org/10.1016/j.jalgebra.2023.08.014
Hacking, P., The homology of tropical varieties, Collect. Math. 59 (2008), no. 3, 263–273. https://doi.org/10.1007/BF03191187
Hacking, P., Keel, S., and Tevelev, J., Stable pair, tropical, and log canonical compactifications of moduli spaces of del Pezzo surfaces, Invent. Math. 178 (2009), no. 1, 173–227. https://doi.org/10.1007/s00222-009-0199-1
Hatcher, A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
Itenberg, I., Katzarkov, L., Mikhalkin, G., and Zharkov, I., Tropical homology, Math. Ann. 374 (2019), no. 1-2, 963–1006. https://doi.org/10.1007/s00208-018-1685-9
Jell, P., Rau, J., and Shaw, K., Lefschetz $(1,1)$-theorem in tropical geometry, Épijournal Géom. Algébrique 2 (2018), Art. 11, 27pp. https://doi.org/10.46298/epiga.2018.volume2.4126
Jell, P., Shaw, K., and Smacka, J., Superforms, tropical cohomology, and Poincaré duality, Adv. Geom. 19 (2019), no. 1, 101–130. https://doi.org/10.1515/advgeom-2018-0006
Maclagan, D., and Sturmfels, B., Introduction to tropical geometry, Graduate Studies in Mathematics, 161, American Mathematical Society, Providence, RI, 2015. https://doi.org/10.1090/gsm/161
Mikhalkin, G., and Rau, J., Tropical geometry, https://math.uniandes.edu.co/ j.rau/downloads/main.pdf.
Milnor, J., Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, NJ, 1963.
Orlik, P., and Solomon, L., Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. https://doi.org/10.1007/BF01392549
Orlik, P., and Terao, H., Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 300, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/978-3-662-02772-1
Renaudineau, A., and Shaw, K., Bounding the Betti numbers of real hypersurfaces near the tropical limit, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), no. 3, 945–980. https://doi.org/10.24033/asens.2547
Shaw, K. M., Tropical intersection theory and surfaces, Ph.D. thesis, Université de Genève, 01 2011, ID: unige:22758.
Sturmfels, B., and Tevelev, J., Elimination theory for tropical varieties, Math. Res. Lett. 15 (2008), no. 3, 543–562. https://doi.org/10.4310/MRL.2008.v15.n3.a14
Tevelev, J., Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), no. 4, 1087–1104. https://doi.org/10.1353/ajm.2007.0029
The Stacks project, https://stacks.math.columbia.edu/tag/0BIC
Zharkov, I., The Orlik-Solomon algebra and the Bergman fan of a matroid, J. Gökova Geom. Topol. GGT 7 (2013), 25–31.