Total extension groups for unital Kirchberg algebras
DOI:
https://doi.org/10.7146/math.scand.a-156673Abstract
We introduce a hierarchy for unital Kirchberg algebras with finitely generated K-groups by which the first and second homotopy groups of the automorphism groups serve as a complete invariant of classification. We also introduce an invariant called the total extension group which is the direct sum of the strong and weak extension groups. In the case of unital Kirchberg algebras with finitely generated K-groups, the total extension group gives a complete invariant and provides a useful tool to classify the Cuntz–Krieger algebras.
References
Blackadar, B. E., K-theory for operator algebras, Mathematical Sciences Research Institute Publications, 5. Springer-Verlag, New York, 1986 https://doi.org/10.1007/978-1-4613-9572-0
Brown, L. G., The universal coefficient theorem for $Ext $ and quasidiagonality, Operator algebras and group representations, Vol. I (Neptun, 1980), 60–64, Monogr. Stud. Math., 17, Pitman, Boston, MA, 1984.
Cuntz, J., A class of $C^*$-algebras and topological Markov chains II: reducible chains and the $Ext $-functor for $C^*$-algebras, Invent. Math. 63 (1981), no. 1, 25–40. https://doi.org/10.1007/BF01389192
Cuntz, J., K-theory for certain simple $C^*$-algebras, Ann. of Math. (2) 113 (1981), no. 1, 181–197 https://doi.org/10.2307/1971137
Cuntz, J., On the homotopy groups of the space of endomorphisms of a $C^*$-algebra (with applications to topological Markov chains), Operator algebras and group representations, Vol. I (Neptun, 1980), 124–137, Monogr. Stud. Math., 17, Pitman, Boston, MA, 1984.
Cuntz, J., and Krieger, W., A class of $C^*$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. https://doi.org/10.1007/BF01390048
Dadarlat, M., The homotopy groups of the automorphism groups of Kirchberg algebras, J. Noncommut. Geom. 1 (2007), no. 1, 113–139. https://doi.org/10.4171/JNCG/3
Kaminker, J., and Putnam, I., K-Theoretic duality for shifts of finite type, Comm. Math. Phys. 187 (1997), no. 3, 509–522. https://doi.org/10.1007/s002200050147
Kaminker, J., and Schochet, C., Spanier-Whitehead $K $-duality for $C^*$-algebras, J. Topol. Anal. 11 (2019), no. 1, 21–52. https://doi.org/10.1142/S1793525319500055
Kirchberg, E., The classification of purely infinite $C^*$-algebras using Kasparov's theory, manuscript available at https://ivv5hpp.uni-muenster.de/u/echters/ekneu1.pdf
Matsumoto, K., On strong extension groups of Cuntz–Krieger algebras, Anal. Math. 50 (2024), no. 3, 917–937. https://doi.org/10.1007/s10476-024-00046-5
Matsumoto, K. and Sogabe, T., On the homotopy groups of the automorphism groups of Cuntz–Krieger algebras, J. Noncommut. Geom., to appear. arXiv:2404.06115 https://doi.org/10.48550/arXiv.2404.06115
Matsumoto, K. and Sogabe, T., Total extension groups for unital Kirchberg algebras, arXiv:2408.09359 https://doi.org/10.48550/arXiv.2408.09359
Matsumoto, K., and Sogabe, T., Reciprocal Cuntz–Krieger algebras, arXiv:2502.18126. https://doi.org/10.48550/arXiv.2502.18126
Pennig, U., and Sogabe, T., Spanier–Whitehead $K $-duality and duality of extensions of C*-algebras, Int. Math. Res. Not. IMRN 2024, no. 23, 14321–14351. https://doi.org/10.1093/imrn/rnae242
Phillips, N. C., A classification theorem for nuclear purely infinite simple $C^*$-algebras, Doc. Math. 5 (2000), 49–114.
Rørdam, M., Classification of Cuntz–Krieger algebras, $K$-Theory 9 (1995), no. 1, 31–58. https://doi.org/10.1007/BF00965458
Rørdam, M., and Størmer, E., Classification of nuclear $C^*$-algebras. Entropy in operator algebras. Encyclopaedia of Mathematical Sciences, 126. Operator Algebras and Non-commutative Geometry, 7. Springer-Verlag, Berlin, 2002. https://doi.org/10.1007/978-3-662-04825-2
Rosenberg, J., and Schochet, C., The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor, Duke Math. J. 55 (1987), no. 2, 431–474. https://doi.org/10.1215/S0012-7094-87-05524-4
Skandalis, G., On the strong Ext bifunctor, Preprint, Queen's University no. 19, 1983.
Sogabe, T., The reciprocal Kirchberg algebras, J. Funct. Anal. 286 (2024), no. 11, Paper No. 110395, 53pp. https://doi.org/10.1016/j.jfa.2024.110395