On Fourier and Fourier-Stieltjes algebras of $C^{\ast}$-dynamical systems
DOI:
https://doi.org/10.7146/math.scand.a-156221Abstract
We continue the study of the Fourier-Stieltjes algebra of a $C^{\ast }$-dynamical system, initiated by Bédos and Conti, and recently extended by Buss, Kwaśniewski, McKee and Skalski. Firstly, we introduce and study a natural notion of a Fourier algebra of a $C^{\ast }$-dynamical system. Notably, we show that it can equivalently be defined either as the closure of the multipliers with finite support or as the closure of multipliers coming from regular equivariant representations. Secondly, we undertake an analysis of the equivariant representation theory of commutative systems. Our main result about this is a description of the group theoretical aspect of the equivariant representation theory in terms of cocycle representations of the underlying transformation group.
References
Adamo, M., Archey, D., Forough, M., Georgescu, M., Jeong, J., Strung, K., and Viola, M., $C^*$-algebras associated to homeomorphisms twisted by vector bundles over finite dimensional spaces, Trans. Amer. Math. Soc. 377 (2024), no. 3, 1597–1640. https://doi.org/10.1090/tran/8900
Arendt, W., and de Cannière, J., Order isomorphisms of Fourier-Stieltjes algebras, Math. Ann. 263 (1983), no. 2, 145–156. https://doi.org/10.1007/BF01456877
Bédos, E., and Conti, R., On discrete twisted $C^*$-dynamical systems, Hilbert $C^*$-modules and regularity, Münster J. Math. 5 (2012), 183–208.
Bédos, E., and Conti, R., Fourier series and twisted $C^*$-crossed products, J. Fourier Anal. Appl. 21 (2015), no. 1, 32–75. https://doi.org/10.1007/s00041-014-9360-3
Bédos, E. and Conti, R., The Fourier-Stieltjes algebra of a $C^*$-dynamical system, Internat. J. Math. 27 (2016), no. 6, 1650050, 50 pp. https://doi.org/10.1142/S0129167X16500506
Bédos, E., and Conti, R., The Fourier-Stieltjes algebra of a $C^*$-dynamical system II, Studia Math. 256 (2021), no. 2, 217–239. https://doi.org/10.4064/sm190826-25-3
Brown, N. P., and Ozawa, N., $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, 88. American Mathematical Society, Providence, RI, 2008. https://doi.org/10.1090/gsm/088
Buss, A., Kwaśniewski, B., McKee, A., and Skalski, A., Fourier-Stieltjes category for twisted groupoid actions, 2024, arXiv:2405.15653
Dixmier, J., and Douady, A., Champs continus d’espaces hilbertiens et de $C^*$-algèbres, Bull. Soc. Math. France 91 (1963), 227–284. http://www.numdam.org/item?id=BSMF_1963__91__227_0
Eymard, P., L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236. http://www.numdam.org/item?id=BSMF_1964__92__181_0
Fell, J. M. G., and Doran, R. S., Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles. Vol. 1. Basic representation theory of groups and algebras, Pure and Applied Mathematics, 125. Academic Press, Inc., Boston, MA, 1988.
Hsu, M.-H., and Wong, N.-C., Isometric embeddings of Banach bundles, Taiwanese J. Math. 15 (2011), no. 5, 1969–1978. https://doi.org/10.11650/twjm/1500406417
Jerison, M., The space of bounded maps into a Banach space, Ann. of Math. (2) 52 (1950), 309–327 https://doi.org/10.2307/1969472
Kaniuth, E., and Lau, A. T.-M., Fourier and Fourier-Stieltjes algebras on locally compact groups, Mathematical Surveys and Monographs, 231, American Mathematical Society, Providence, RI, 2018. https://doi.org/10.1090/surv/231
Lance, E. C., Hilbert $C^*$-modules: A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, 210. Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511526206
Lorenz, F., Algebra. Volume II: Fields with structure, algebras and advanced topics, Universitext, Springer New York, 2008.
Oty, K. J., Fourier-Stieltjes algebras of $r$-discrete groupoids, J. Operator Theory 41 (1999), no. 1, 175–197.
Pisier, G., Tensor products of $C^*$-algebras and operator spaces: The Connes–Kirchberg problem, London Mathematical Society Student Texts, 96. Cambridge University Press, Cambridge, 2020. https://doi.org/10.1017/9781108782081
Ravnanger, A. G., The Fourier-Stieltjes algebra of a $C^*$-dynamical system. Theory and examples, Master's thesis, University of Oslo, 2024.
Renault, J., The Fourier algebra of a measured groupoid and its multipliers, J. Funct. Anal. 145 (1997), no. 2, 455–490. https://doi.org/10.1006/jfan.1996.3039
Takahashi, A., A duality between Hilbert modules and fields of Hilbert spaces, Rev. Colombiana Mat. 13 (1979), no. 2, 93–120.
Takahashi, A., Hilbert modules and their representation, Rev. Colombiana Mat. 13 (1979), no. 1, 1–38.
Walter, M. E., $W^*$-algebras and nonabelian harmonic analysis, J. Funct. Anal. 11 (1972), 17–38. https://doi.org/10.1016/0022-1236(72)90077-8
Williams, D. P., Crossed products of $C^*$-algebras, Mathematical Surveys and Monographs, 134. American Mathematical Society, Providence, RI, 2007 https://doi.org/10.1090/surv/134
Zimmer, R. J., Extensions of ergodic group actions, Illinois Journal of Mathematics 20 (1976), no. 4, 373–409. http://projecteuclid.org/euclid.ijm/1256049648