On the shape of correlation matrices for unitaries


  • Michiya Mori




For a positive integer $n$, we study the collection $\mathcal {F}_{\mathrm {fin}}(n)$ formed of all $n\times n$ matrices whose entries $a_{ij}$, $1\leq i,j\leq n$, can be written as $a_{ij}=\tau (U_j^*U_i)$ for some $n$-tuple $U_1, U_2, …, U_n$ of unitaries in a finite-dimensional von Neumann algebra $\mathcal {M}$ with tracial state τ. We show that $\mathcal {F}_{\mathrm {fin}}(n)$ is not closed for every $n\geq 8$. This improves a result by Musat and R{ø}rdam which states the same for $n\geq 11$.


Bhat, B. V. S., Nayak, S., and Shankar, P., On products of symmetries in von Neumann algebras, J. Operator Theory, to appear. https://doi.org/10.48550/arXiv.2204.00009

Dykema, K., and Juschenko, K., Matrices of unitary moments, Math. Scand. 109 (2011), no. 2, 225–239. https://doi.org/10.7146/math.scand.a-15186

Dykema, K., Paulsen, V., and Prakash, J., Non-closure of the set of quantum correlations via graphs, Comm. Math. Phys. 365 (2019), no. 3, 1125–1142. https://doi.org/10.1007/s00220-019-03301-1

Ji, Z., Natarajan, A., Vidick, T., Wright, J., and Yuen, H., MIP^*=RE, Preprint, arXiv:2001.04383. https://doi.org/10.48550/arXiv.2001.04383

Kirchberg, E., On nonsemisplit extensions, tensor products and exactness of group $C^*$-algebras, Invent. Math. 112 (1993), no. 3, 449–489. https://doi.org/10.1007/BF01232444

Kruglyak, S. A., Rabanovich, V. I., and Samou ılenko, Y. S., On sums of projections, Funktsional. Anal. i Prilozhen. 36 (2002), no. 3, 20–35, 96; translation in Funct. Anal. Appl. 36 (2002), no. 3, 182–195. https://doi.org/10.1023/A:1020193804109

Musat, M., and Rørdam, M., Non-closure of quantum correlation matrices and factorizable channels that require infinite dimensional ancilla, with an appendix by Narutaka Ozawa, Comm. Math. Phys. 375 (2020), no. 3, 1761–1776. https://doi.org/10.1007/s00220-019-03449-w

Russell, T. B. Two-outcome synchronous correlation sets and Connes' embedding problem, Quantum Inf. Comput. 20 (2020), no. 5–6, 361–374.



How to Cite

Mori, M. (2024). On the shape of correlation matrices for unitaries. MATHEMATICA SCANDINAVICA, 130(2). https://doi.org/10.7146/math.scand.a-142800