Attainable measures for certain types of $p$-adic Duffin-Schaeffer sets


  • Mathias L. Laursen



This paper settles recent conjectures concerning the $p$-adic Haar measure applied to a family of sets defined in terms of Diophantine approximation. This is done by determining the spectrum of measure values for each family and seeing that this contradicts the corresponding conjectures.


Badziahin, D., and Bugeaud, Y., Multiplicative $p$-adic approximation, Michigan Math. J. 71 (2022), no. 1, 121–143.

Cassels, J. W. S., Some metrical theorems in Diophantine approximation. I, Proc. Cambridge Philos. Soc. 46 (1950), no. 2, 209–218.

Duffin, R. J., and Schaeffer, A. C., Khintchine's problem in metric Diophantine approximation, Duke Math. J. 8 (1941), no. 2, 243–255.

Gallagher, P., Approximation by reduced fractions, J. Math. Soc. Japan 13 (1961), no. 4, 342–345.

Haynes, A. K., The metric theory of $p$-adic approximation, Int. Math. Res. Not. IMRN 2010, no. 1, 18–52.

Jarník, V., Sur les approximations diophantiques des nombres $p$-adiques, Rev. Ci. (Lima) 47 (1945), 489–505.

Khintchine, A., Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann. 92 (1924), no. 1–2, 115–125.

Koukoulopoulos, D., and Maynard, J., On the Duffin-Schaeffer conjecture, Ann. of Math. (2) 192 (2020), no. 1, 251–307.

Kristensen, S., and Laursen, M. L., The $p$-adic Duffin-Schaeffer conjecture, Funct. Approx. Comment. Math. 68 (2023), no. 1, 113–126.

Lutz, E., Sur les approximations diophantiennes linéaires $p$-adiques, Actualités Scientifiques et Industrielles; No. 1224. Hermann & Cie, Paris, 1955.

Montgomery, H. L., and Vaughan, R. C., Multiplicative number theory I. Classic theory, Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007.



How to Cite

Laursen, M. L. (2023). Attainable measures for certain types of $p$-adic Duffin-Schaeffer sets. MATHEMATICA SCANDINAVICA, 129(3).