Critical configurations for three projective views


  • Martin Bråtelund



The problem of structure from motion is concerned with recovering the 3-dimensional structure of an object from a set of 2-dimensional images taken by unknown cameras. Generally, all information can be uniquely recovered if enough images and point correspondences are provided, yet there are certain cases where unique recovery is impossible; these are called \emph{critical configurations}. We use an algebraic approach to study the critical configurations for three projective cameras. We show that all critical configurations lie on the intersection of quadric surfaces, and classify exactly which intersections constitute a critical configuration.


Agarwal, S., Pryhuber, A., and Thomas, R. R., Ideals of the multiview variety, IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (2021), no. 4, 1279–1292.

Bertolini, M., Besana, G. M., Notari, R., and Turrini, C., Critical loci in computer vision and matrices dropping rank in codimension one, J. Pure Appl. Algebra 224 (2020), no. 12, 106439.

Bertolini, M., and Turrini, C., Critical configurations for 1-view in projections from $ P^k$ to $P^2$, J. Math. Imaging Vision 27 (2007), no. 3, 277–287.

Bertolini, M., Turrini, C., and Besana, G., Instability of projective reconstruction of dynamic scenes near critical configurations, in “2007 IEEE 11th International Conference on Computer Vision”, 2007, pp. 1–7.

Bråtelund, M., Critical configurations for two projective views, a new approach, J. Symbolic Comput. (2024), 102226, 22pp.

Bråtelund, M., and Rydell, F., Compatibility of Fundamental Matrices for Complete Viewing Graphs, arXiv e-prints (2023), arXiv:2303.10658.

Buchanan, T., The twisted cubic and camera calibration, Comput. Vision Graphics Image Process. 42 (1988), no. 1, 130–132.

Buchanan, T., Critical sets for 3d reconstruction using lines, Computer vision—ECCV '92 (Santa Margherita Ligure, 1992), 730–738, Lecture Notes in Comput. Sci., 588, Springer, Berlin, 1992.

Coxeter, H. S. M. and Greitzer, S. L., Geometry revisited, New Mathematical Library, 19. Random House, Inc., New York, 1967.

Hartley, R., Ambiguous configurations for 3-view projective reconstruction, in “Computer Vision—ECCV 2000” (Berlin, Heidelberg), Springer Berlin Heidelberg, 2000, 922–935.

Hartley, R., and Kahl, F., Critical curves and surfaces for euclidean reconstruction, in “Computer Vision—ECCV 2002” Springer Berlin Heidelberg, 2002, pp. 447–462.

Hartley, R., and Kahl, F., Critical configurations for projective reconstruction from multiple views, Int. J. Comput. Vision 71 (2007), no. 1, 5–47.

Hartley, R., and Zisserman, A., Multiple view geometry in computer vision, Second ed., Cambridge University Press, 2004.

Kahl, F., Hartley, R., and Astrom, K., Critical configurations for $n$-view projective reconstruction, in “Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001”, vol. 2, 2001, pp. II–158–II–164.

Krames, J., Zur Ermittlung eines Objektes aus zwei Perspektiven. (Ein Beitrag zur Theorie der “gefährlichen Örter”), Monatsh. Math. Phys. 49 (1941), 327–354

Luong, Q. T., and Faugeras, O. D., A stability analysis of the fundamental matrix, Computer vision—ECCV '94, Vol. 1 (Stockholm, 1994), 589–599, Lecture Notes in Comput. Sci., 800, Springer, Berlin, 1994.

Maybank, S., Theory of reconstruction from image motion, Springer Series in Information Sciences, 28. Springer-Verlag, Berlin, 1993.

Maybank, S., and Shashua, A., Ambiguity in reconstruction from images of six points, in “Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271)”, 02 1998, 703–708.



How to Cite

Bråtelund, M. (2023). Critical configurations for three projective views. MATHEMATICA SCANDINAVICA, 129(3).