Binomial edge ideals over an exterior algebra


  • Irena Peeva



We introduce the study of binomial edge ideals over an exterior algebra.


Francisco, C., Mermin, J., and Schweig, J., A survey of Stanley-Reisner theory, Connections between algebra, combinatorics, and geometry, 209–234. Springer Proc. Math. Stat. 76, Springer, New York, 2014.

Herzog, J., and Hibi, T., Monomial ideals, Graduate Texts in Mathematics 260, Springer-Verlag London, 2011.

Herzog, J., Hibi, T., Hreinsdotir, F., Kahle, T., and Rauh, J., Binomial edge ideals and conditional independence statements, Adv. in Appl. Math. 45 (2010), no. 3, 317–333.

Herzog, J., Kiani, D., and Madani, S., The linear strand of determinantal facet ideals, Michigan Math. J. 66 (2017), no. 1, 107–123.

Herzog, J., Hibi, T., and Ohsugi H., Binomial ideals, Graduate Texts in Mathematics 279, Springer, Cham, 2018.

Morey, S., and Villarreal, R. H., Edge ideals: algebraic and combinatorial properties, Progress in commutative algebra 1, 85–126, de Gruyter, Berlin, 2012.

Ohtani, M., Graphs and ideals generated by some 2-minors, Commun. Algebra 39 (2011), no. 3, 905–917.

Peeva, I., Graded syzygies, Algebra and Applications 14, Springer-Verlag London, 2011.

Rotman, J. J., Advanced modern algebra, part 1, Third edition, Graduate Studies in Mathematics 165, American Mathematical Society, Providence, RI, 2015.

Welker, V., Which properties of Stanley-Reisner rings and simplicial complexes are topological?, Commutative algebra, 859–889, Springer, Cham, 2021.



How to Cite

Peeva, I. (2023). Binomial edge ideals over an exterior algebra. MATHEMATICA SCANDINAVICA, 129(2).