Componentwise linear powers and the $x$-condition


  • Jürgen Herzog
  • Takayuki Hibi
  • Somayeh Moradi



Let $S=K[x_1,\ldots,x_n]$ be the polynomial ring over a field and $A$ a standard graded $S$-algebra. In terms of the Gröbner basis of the defining ideal $J$ of $A$ we give a condition, called the $x$-condition, which implies that all graded components $A_k$ of $A$ have linear quotients and with additional assumptions are componentwise linear. A typical example of such an algebra is the Rees ring $\mathcal{R}(I)$ of a graded ideal or the symmetric algebra $\textrm{Sym}(M)$ of a module $M$. We apply our criterion to study certain symmetric algebras and the powers of vertex cover ideals of certain classes of graphs.


Aramova, A., Herzog, J., and Hibi, T., Finite lattices and lexicographic Gröbner bases, European J. Combin. 21 (2000), no. 4, 431–439.

Aramova, A., Herzog, J., and Hibi, T., Ideals with stable Betti numbers, Adv. Math. 152 (2000), no. 1, 72–77.

Bruns, W., and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, 1993.

Buchsbaum, D. A., and Eisenbud, D., What makes a complex exact?, J. Algebra 25 (1973), 259–268.

Dirac, G. A., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71–76.

Erey, N., and Qureshi, A. A., Second powers of cover ideals of paths, arXiv:1912.08161.

Herzog, J., and Hibi, T., Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153.

Herzog, J., and Hibi, T., The depth of powers of an ideal, J. Algebra 291 (2005), no. 2, 534–550.

Herzog, J., and Hibi, T., Monomial Ideals, Graduate Texts in Mathematics, 260. Springer-Verlag London, Ltd., London, 2011.

Herzog, J., Hibi, T., Hreinsdottir, F., Kahle, T., and Rauh, J., Binomial edge ideals and conditional independence statements, Adv. Appl. Math. 45 (2010), no. 3, 317–333.

Herzog, J., Hibi, T., and Ohsugi, H., Binomial ideals, Graduate Texts in Mathematics, 279. Springer, Cham, 2018.

Herzog, J., Hibi, T., and Ohsugi, H., Powers of componentwise linear ideals, Combinatorial aspects of commutative algebra and algebraic geometry, 49–60. Abel Symp., 6, Springer, Berlin, 2011.

Herzog, J., Hibi, T., and Zheng, X., Monomial ideals whose powers have a linear resolution, Math. Scand. (2004), no. 1, 23–32.

Herzog, J., and Iyengar, D., Koszul modules, J. Pure Appl. Algebra 201 (2005), no. 1–3, 154–188.

Herzog, J., Reiner, V., and Welker, V., Componentwise linear ideals and Golod rings, Michigan Math. J. 46 (1999), no. 2, 211–223.

Hibi, T., Higashitani, A., Kimura, K., and O'Keefe, A. B., Algebraic study on Cameron–Walker graphs, J. Algebra 422 (2015), 257–269.

Mohammadi, F., Powers of the vertex cover ideal of a chordal graph, Comm. Algebra. 39 (2011), no. 10, 3753–3764.

Mohammadi, F., Powers of the vertex cover ideals, Collect. Math. 65 (2014), no. 2, 169–181.

Ohtani, M., Graphs and ideals generated by some $2$-minors, Comm. Algebra. 39 (2011), no. 3, 905–917.

Römer, T., On minimal graded free resolutions, Dissertation, Universität Duisburg-Essen, 2001.

Sharifan, L., and Varbaro, M., Graded Betti numbers of ideals with linear quotients, Matematiche (Catania) 63 (2008), no. 2, 257–265.

Yanagawa, K., Alexander duality for Stanley–Reisner rings and squarefree $NN ^n$-graded modules, J. Algebra 225 (2000), no. 2, 630–645.



How to Cite

Herzog, J., Hibi, T., & Moradi, S. (2022). Componentwise linear powers and the $x$-condition. MATHEMATICA SCANDINAVICA, 128(3).