The space $D$ in several variables: random variables and higher moments

Authors

  • Svante Janson

DOI:

https://doi.org/10.7146/math.scand.a-128971

Abstract

We study the Banach space $D([0,1]^m)$ of functions of several variables that are (in a certain sense) right-continuous with left limits, and extend several results previously known for the standard case $m=1$. We give, for example, a description of the dual space, and we show that a bounded multilinear form always is measurable with respect to the $\sigma$-field generated by the point evaluations. These results are used to study random functions in the space. (I.e., random elements of the space.) In particular, we give results on existence of moments (in different senses) of such random functions, and we give an application to the Zolotarev distance between two such random functions.

References

Billingsley, P., Convergence of Probability Measures, 2nd ed., Wiley, New York, 1999. https://doi.org/10.1002/9780470316962

Bogachev, V. I., Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007. https://doi.org/10.1007/978-3-540-34514-5

Broutin, N„ and Sulzbach, H., Partial match limit processes in higher dimensions, in preparation.

Cohn, D. L., Measure Theory, Birkhäuser, Boston, 1980.

Edgar, G. A., Measurability in a Banach space. II, Indiana Univ. Math. J. 28 (1979), no. 4, 559–579. https://doi.org/10.1512/iumj.1979.28.28039

Engelking, R., General topology, 2nd ed., Heldermann Verlag, Berlin, 1989.

Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79.

Gut, A., Probability: a graduate course, 2nd ed., Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-4708-5

Halmos, P., R., Measure theory, Van Nostrand, New York, NY, 1950.

Huff., R., Remarks on Pettis integrability, Proc. Amer. Math. Soc. 96 (1986), no. 3, 402–404. https://doi.org/10.2307/2046583

Janson, S., and Kaijser, S., Higher moments of Banach space valued random variables, Mem. Amer. Math. Soc. 238 (2015), no. 1127. https://doi.org/10.1090/memo/1127

Neininger, R., and Sulzbach, H., On a functional contraction method Ann. Probab. 43 (2015), no. 4, 1777–1822.

Neuhaus, G., On weak convergence of stochastic processes with multidimensional time parameter, Ann. Math. Statist. 42 (1971), 1285–1295. https://doi.org/10.1214/aoms/1177693241

Pestman, W. R., Measurability of linear operators in the Skorokhod topology, Bull. Belg. Math. Soc. Simon Stevin 2 (1995), no. 4, 381–388.

Ryan, R. A., Introduction to tensor products of Banach spaces, Springer-Verlag, London, 2002. https://doi.org/10.1007/978-1-4471-3903-4

Straf, M. L., Weak convergence of stochastic processes with several parameters, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pp. 187–221. Univ. California Press, Berkeley, Calif., 1972.

Wichura, M. J., On the weak convergence of non-Borel probabilities on a metric space, Ph.D. Thesis, Columbia University, 1968.

Wichura, M. J., Inequalities with applications to the weak convergence of random processes with multi-dimensional time parameters, Ann. Math. Statist. 40 (1969), 681–687. https://doi.org/10.1214/aoms/1177697741

Zolotarev, V. M. Approximation of the distributions of sums of independent random variables with values in infinite-dimensional spaces, (Russian.) Teor. Veroyatnost. i Primenen. 21 (1976), no. 4, 741–758. Erratum ibid 22 (1977), no. 4, 901. English transl.: Theory Probab. Appl. 21 (1976), no. 4, 721–737 (1977); ibid 22 (1977), no 4., 881.

Published

2021-11-30

How to Cite

Janson, S. (2021). The space $D$ in several variables: random variables and higher moments. MATHEMATICA SCANDINAVICA, 127(3). https://doi.org/10.7146/math.scand.a-128971

Issue

Section

Articles