Asymptotic behavior of $j$-multiplicities


  • Thiago Henrique de Freitas
  • Victor Hugo Jorge Pérez
  • Pedro Henrique Lima



Let $R= \oplus_{n\in \mathbb{N}_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,\mathfrak{m}_0)$. Let $R_+= \oplus_{n\in \mathbb{N}}R_n$ denote the irrelevant ideal of $R$ and let $M=\oplus_{n\in \mathbb{Z}}M_n$ be a finitely generated graded $R$-module. When $\dim(R_0)\leq 2$ and $\mathfrak{q}_0$ is an arbitrary ideal of $R_0$, we show that the $j$-multiplicity of the graded local cohomology module $j_0({\mathfrak{q}_0},H_{R_+}^i(M)_n)$ has a polynomial behavior for all $n\ll0$.


Achilles, R., and Manaresi, M., Multiplicity for ideals of maximal analytic spread and intersection theory, J. Math. Kyoto Univ. 33 (1993), no. 4, 1029–1046.

Brodmann, M., Fumasoli, S., and Lim, C. S., Low-codimensional associated primes of graded components of local cohomology modules, J. Algebra 275 (2004), no. 2, 867–882.

Brodmann, M., Fumasoli, S., and Tajarod, R., Local cohomology over homogeneous rings with one-dimensional local base ring, Proc. Amer. Math. Soc. 131 (2003), no. 10, 2977–2985.

Brodmann, M., and Hellus, M., Cohomological patterns of coherent sheaves over projective schemes, J. Pure Appl. Algebra 172 (2002), no. 2–3 165–182.

Brodmann, M., Kurmann, S., and Rohrer, F., An avoidance principle with an application to the asymptotic behaviour of graded local cohomology modules, J. Pure Appl. Algebra 210 (2007), no. 3, 639–645.

Brodmann, M., and Rohrer, F., Hilbert-Samuel coefficients and postulation numbers of graded components of certain local cohomology modules, Proc. Amer. Math. Soc. 193 (2005), no. 4, 987–993.

Brodmann, M., Rohrer, F., and Sazeedeh, R., Multiplicities of graded components of local cohomology modules, J. Pure Appl. Algebra 197 (2005), no. 1–3, 249–278.

Brodmann, M., and Sharp, R., Local cohomology - an algebraic introduction with geometric applications, Cambridge studies in advanced mathematics 60, Cambridge University Press, Cambridge, 1998.

Huneke, C., and Swanson, I., Integral closure of ideals, rings, and modules. London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, 2006.

Jeffries, J., and Montaño, J., The $j$-multiplicity of monomial ideals, Math. Res. Lett. 20 (2013), no. 4, 729–744.

Kirby, D., Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford Ser. (2) 24 (1973), 47-57.

Nishida, K., and Ulrich, B., Computing $j$-multiplicities, J. Pure Appl. Algebra 214 (2010), no. 12, 2101–2110.

Polini, C., and Xie, Y., Generalized Hilbert Functions, Comm. Algebra 42 (2014), no. 6, 2411–2427.

Roberts, P., Multiplicities and Chern Classes in Local Algebra, Cambridge Tracts in Mathematics, 133. Cambridge University Press, Cambridge, 1998.



How to Cite

de Freitas, T. H. ., Pérez, V. H. J. ., & Lima, P. H. . (2021). Asymptotic behavior of $j$-multiplicities. MATHEMATICA SCANDINAVICA, 127(2), 209–222.