Little dimension and the improved new intersection theorem


  • Tsutomu Nakamura
  • Ryo Takahashi
  • Siamak Yassemi



Let $R$ be a commutative noetherian local ring. We define a new invariant for $R$-modules which we call the little dimension. Using it, we extend the improved new intersection theorem.


André, Y., La conjecture du facteur direct, Publ. Math. Inst. Hautes Études Sci. 127 (2018), 71–93.

Bruns, W. and Herzog, J., Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.

Christensen, L. W., Gorenstein dimensions, Lecture Notes in Mathematics, vol. 1747, Springer-Verlag, Berlin, 2000.

Evans, E. G. and Griffith, P., The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333.

Foxby, H.-B., Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), no. 2, 149–172.

Foxby, H.-B. and Iyengar, S., Depth and amplitude for unbounded complexes, in “Commutative algebra (Grenoble/Lyon, 2001)”, Contemp. Math., vol. 331, Amer. Math. Soc., Providence, RI, 2003, pp. 119–137.

Foxby, H.-B. and Yassemi, S., Small dimension and intersection theorem (infinite version), private notes, 1999.

Hartshorne, R., Residues and duality, Lecture Notes in Mathematics, no. 20, Springer-Verlag, Berlin-New York, 1966.

Heitmann, R. and Ma, L., Big Cohen-Macaulay algebras and the vanishing conjecture for maps of Tor in mixed characteristic, Algebra Number Theory 12 (2018), no. 7, 1659–1674.

Hochster, M., Canonical elements in local cohomology modules and the direct summand conjecture, J. Algebra 84 (1983), no. 2, 503–553.

Hochster, M., Homological conjectures, old and new, Illinois J. Math. 51 (2007), no. 1, 151–169.

Iyengar, S., Depth for complexes, and intersection theorems, Math. Z. 230 (1999), no. 3, 545–567.

Sharif, T. and Yassemi, S., Special homological dimensions and intersection theorem, Math. Scand. 96 (2005), no. 2, 161–168.

Sharp, R. Y., Cohen-Macaulay properties for balanced big Cohen-Macaulay modules, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 229–238.

Veliche, O., Construction of modules with finite homological dimensions, J. Algebra 250 (2002), no. 2, 427–449.



How to Cite

Nakamura, T., Takahashi, R., & Yassemi, S. (2020). Little dimension and the improved new intersection theorem. MATHEMATICA SCANDINAVICA, 126(2), 209–220.