An interpolation of Ohno's relation to complex functions

  • Minoru Hirose
  • Hideki Murahara
  • Tomokazu Onozuka


Ohno's relation is a well known formula among multiple zeta values. In this paper, we present its interpolation to complex functions.


Akiyama, S., Egami, S., and Tanigawa, Y., Analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), no. 2, 107–116.

Apostol, T. M., Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.

Hirose, M., Murahara, H., and Onozuka, T., Sum formula for multiple zeta function, eprint arXiv:1808.01559 [math.NT], 2018.

Ikeda, S. and Matsuoka, K., On the functional relations for the Euler-Zagier multiple zeta-functions, Tokyo J. Math. 41 (2018), no. 2, 477–485.

Komori, Y., Matsumoto, K., and Tsumura, H., On Witten multiple zeta-functions associated with semisimple Lie algebras II, J. Math. Soc. Japan 62 (2010), no. 2, 355–394.

Matsumoto, K., On the analytic continuation of various multiple zeta-functions, in “Number theory for the millennium, II (Urbana, IL, 2000)”, A K Peters, Natick, MA, 2002, pp. 417–440.

Matsumoto, K., Analytic properties of multiple zeta-functions in several variables, in “Number theory”, Dev. Math., vol. 15, Springer, New York, 2006, pp. 153–173.

Matsumoto, K. and Tsumura, H., Functional relations for various multiple zeta-functions, in “Analytic Number Theory (Kyoto, 2005)”, RIMS Kôkyûroku, no. 1512, 2006, pp. 179–190.

Matsumoto, K. and Tsumura, H., On Witten multiple zeta-functions associated with semisimple Lie algebras. I, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 5, 1457–1504.

Nakamura, T., A functional relation for the Tornheim double zeta function, Acta Arith. 125 (2006), no. 3, 257–263.

Ohno, Y., A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), no. 1, 39–43.

Tsumura, H., On functional relations between the Mordell-Tornheim double zeta functions and the Riemann zeta function, Math. Proc. Cambridge Philos. Soc. 142 (2007), no. 3, 395–405.

Zhao, J., Analytic continuation of multiple zeta functions, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1275–1283.

Zhao, J. and Zhou, X., Witten multiple zeta values attached to $\mathfrak sl(4)$, Tokyo J. Math. 34 (2011), no. 1, 135–152.
How to Cite
Hirose, M., Murahara, H., & Onozuka, T. (2020). An interpolation of Ohno’s relation to complex functions. MATHEMATICA SCANDINAVICA, 126(2), 293-297.