Backward shift invariant subspaces in reproducing kernel Hilbert spaces

  • Emmanuel Fricain
  • Javad Mashreghi
  • Rishika Rupam

Abstract

In this note, we describe the backward shift invariant subspaces for an abstract class of reproducing kernel Hilbert spaces. Our main result is inspired by a result of Sarason concerning de Branges-Rovnyak spaces (the non-extreme case). Furthermore, we give new applications in the context of the range space of co-analytic Toeplitz operators and sub-Bergman spaces.

References

Aleksandrov, A. B., Invariant subspaces of the backward shift operator in the space $H^p$ $(p\in (0,\,1))$: Investigations on linear operators and the theory of functions, IX, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92 (1979), 7–29, 318.

Aleman, A. and Malman, B., Hilbert spaces of analytic functions with a contractive backward shift, J. Funct. Anal. 277 (2019), no. 1, 157–199. https://doi.org/10.1016/j.jfa.2018.08.019

Aleman, A., Richter, S., and Sundberg, C., Invariant subspaces for the backward shift on Hilbert spaces of analytic functions with regular norm, in “Bergman spaces and related topics in complex analysis”, Contemp. Math., vol. 404, Amer. Math. Soc., Providence, RI, 2006, pp. 1–25. https://doi.org/10.1090/conm/404/07631

Bolotnikov, V. and Rodman, L., Finite dimensional backward shift invariant subspaces of Arveson spaces, Linear Algebra Appl. 349 (2002), 265–282. https://doi.org/10.1016/S0024-3795(02)00251-3

Douglas, R. G., On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415. https://doi.org/10.2307/2035178

Douglas, R. G., Shapiro, H. S., and Shields, A. L., Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20, fasc. 1 (1970), 37–76.

Duren, P. L., Theory of $H^p$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970.

Fricain, E. and Mashreghi, J., The theory of $\mathcal H(b)$ spaces. Vol. $1$, New Mathematical Monographs, vol. 20, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781139226752

Fricain, E. and Mashreghi, J., The theory of $\mathcal H(b)$ spaces. Vol. $2$, New Mathematical Monographs, vol. 21, Cambridge University Press, Cambridge, 2016.

Girela, D. and González, C., Division by inner functions, in “Progress in analysis, Vol. I, II (Berlin, 2001)”, World Sci. Publ., River Edge, NJ, 2003, pp. 215–220.

Girela, D., González, C., and Peláez, J. Á., Multiplication and division by inner functions in the space of Bloch functions, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1309–1314. https://doi.org/10.1090/S0002-9939-05-08049-4

Girela, D., González, C., and Peláez, J. Á., Toeplitz operators and division by inner functions, in “Proceedings of the First Advanced Course in Operator Theory and Complex Analysis”, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 85–103.

Havin, V. P., The factorization of analytic functions that are smooth up to the boundary, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 22 (1971), 202–205.

Izuchi, K. and Nakazi, T., Backward shift invariant subspaces in the bidisc, Hokkaido Math. J. 33 (2004), no. 1, 247–254. https://doi.org/10.14492/hokmj/1285766003

Koosis, P., Introduction to $H_p$ spaces, second ed., Cambridge Tracts in Mathematics, vol. 115, Cambridge University Press, Cambridge, 1998.

Lax, P. D., Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2002.

Mashreghi, J., Representation theorems in Hardy spaces, London Mathematical Society Student Texts, vol. 74, Cambridge University Press, Cambridge, 2009. https://doi.org/10.1017/CBO9780511814525

Paulsen, V. I. and Raghupathi, M., An introduction to the theory of reproducing kernel Hilbert spaces, Cambridge Studies in Advanced Mathematics, vol. 152, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316219232

Sarason, D., Doubly shift-invariant spaces in $H^2$, J. Operator Theory 16 (1986), no. 1, 75–97.

Sarason, D., Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10, John Wiley & Sons, Inc., New York, 1994.

Shirokov, N. A., Analytic functions smooth up to the boundary, Lecture Notes in Mathematics, vol. 1312, Springer-Verlag, Berlin, 1988. https://doi.org/10.1007/BFb0082810

Suárez, D., Backward shift invariant spaces in $H^2$, Indiana Univ. Math. J. 46 (1997), no. 2, 593–619. https://doi.org/10.1512/iumj.1997.46.877

Sultanic, S., Sub-Bergman Hilbert spaces, J. Math. Anal. Appl. 324 (2006), no. 1, 639–649. https://doi.org/10.1016/j.jmaa.2005.12.035

Sz.-Nagy, B., Foias, C., Bercovici, H., and Kérchy, L., Harmonic analysis of operators on Hilbert space, second ed., Universitext, Springer, New York, 2010. https://doi.org/10.1007/978-1-4419-6094-8

Zhu, K., Sub-Bergman Hilbert spaces on the unit disk, Indiana Univ. Math. J. 45 (1996), no. 1, 165–176. https://doi.org/10.1512/iumj.1996.45.1097

Zhu, K., Sub-Bergman Hilbert spaces in the unit disk. II, J. Funct. Anal. 202 (2003), no. 2, 327–341. https://doi.org/10.1016/S0022-1236(02)00086-1

Zhu, K., Operator theory in function spaces, second ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. https://doi.org/10.1090/surv/138
Published
2020-03-29
How to Cite
Fricain, E., Mashreghi, J., & Rupam, R. (2020). Backward shift invariant subspaces in reproducing kernel Hilbert spaces. MATHEMATICA SCANDINAVICA, 126(1), 142-160. https://doi.org/10.7146/math.scand.a-119120
Section
Articles