Local boundedness for minimizers of convex integral functionals in metric measure spaces

  • Huiju Wang
  • Pengcheng Niu


In this paper we consider the convex integral functional $ I := \int _\Omega {\Phi (g_u)\,d\mu } $ in the metric measure space $(X,d,\mu )$, where $X$ is a set, $d$ is a metric, µ is a Borel regular measure satisfying the doubling condition, Ω is a bounded open subset of $X$, $u$ belongs to the Orlicz-Sobolev space $N^{1,\Phi }(\Omega )$, Φ is an N-function satisfying the $\Delta _2$-condition, $g_u$ is the minimal Φ-weak upper gradient of $u$. By improving the corresponding method in the Euclidean space to the metric setting, we establish the local boundedness for minimizers of the convex integral functional under the assumption that $(X,d,\mu )$ satisfies the $(1,1)$-Poincaré inequality. The result of this paper can be applied to the Carnot-Carathéodory space spanned by vector fields satisfying Hörmander's condition.


Adams, R. A. and Fournier, J. J. F., Sobolev spaces, second ed., Pure and Applied Mathematics (Amsterdam), vol. 140, Academic Press, 2003.

A\"ıssaoui, N., Another extension of Orlicz-Sobolev spaces to metric spaces, Abstr. Appl. Anal. (2004), no. 1, 1–26. https://doi.org/10.1155/S1085337504309012

Björn, A. and Björn, J., Nonlinear potential theory on metric spaces, EMS Tracts in Mathematics, vol. 17, European Mathematical Society (EMS), Zürich, 2011. https://doi.org/10.4171/099

Breit, D. and Verde, A., Quasiconvex variational functionals in Orlicz-Sobolev spaces, Ann. Mat. Pura Appl. (4) 192 (2013), no. 2, 255–271. https://doi.org/10.1007/s10231-011-0222-1

Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428–517. https://doi.org/10.1007/s000390050094

Esposito, L., Leonetti, F., and Mingione, G., Higher integrability for minimizers of integral functionals with $(p,q)$ growth, J. Differential Equations 157 (1999), no. 2, 414–438. https://doi.org/10.1006/jdeq.1998.3614

Franchi, B., Lu, G., and Wheeden, R. L., A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type, Internat. Math. Res. Notices (1996), no. 1, 1–14. https://doi.org/10.1155/S1073792896000013

Hajłasz, P., Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), no. 4, 403–415. https://doi.org/10.1007/BF00275475

Hajłasz, P. and Koskela, P., Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, 101 pp. https://doi.org/10.1090/memo/0688

Heinonen, J. and Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1–61. https://doi.org/10.1007/BF02392747

Kinnunen, J. and Shanmugalingam, N., Regularity of quasi-minimizers on metric spaces, Manuscripta Math. 105 (2001), no. 3, 401–423. https://doi.org/10.1007/s002290100193

Krasnosel'ski\u ı, M. A. and Ruticki\u ı, J. B., Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.

Marcellini, P., Regularity for elliptic equations with general growth conditions, J. Differential Equations 105 (1993), no. 2, 296–333. https://doi.org/10.1006/jdeq.1993.1091

Mascolo, E. and Papi, G., Local boundedness of minimizers of integrals of the calculus of variations, Ann. Mat. Pura Appl. (4) 167 (1994), 323–339. https://doi.org/10.1007/BF01760338

Mocanu, M., A Poincaré inequality for Orlicz-Sobolev functions with zero boundary values on metric spaces, Complex Anal. Oper. Theory 5 (2011), no. 3, 799–810. https://doi.org/10.1007/s11785-010-0068-3

Mocanu, M., Calculus with weak upper gradients based on Banach function spaces, Sci. Stud. Res. Ser. Math. Inform. 22 (2012), no. 1, 41–63.

Niu, P. and Wang, H., Gehring's lemma for Orlicz functions in metric measure spaces and higher integrability for convex integral funcationals, Houston J. Math. 44 (2018), no. 3, 941–974.

Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000), no. 2, 243–279. https://doi.org/10.4171/RMI/275

Tuominen, H., Orlicz-Sobolev spaces on metric measure spaces, Ann. Acad. Sci. Fenn. Math. Diss. (2004), no. 135, 86 pp., Dissertation, University of Jyväskylä, Jyväskylä, 2004.

Tuominen, H., Pointwise behaviour of Orlicz-Sobolev functions, Ann. Mat. Pura Appl. (4) 188 (2009), no. 1, 35–59. https://doi.org/10.1007/s10231-008-0065-6
How to Cite
Wang, H., & Niu, P. (2020). Local boundedness for minimizers of convex integral functionals in metric measure spaces. MATHEMATICA SCANDINAVICA, 126(2), 259-275. https://doi.org/10.7146/math.scand.a-116244