Vandermonde determinantal ideals

  • Junzo Watanabe
  • Kohji Yanagawa


We show that the ideal generated by maximal minors (i.e., $k+1$-minors) of a $(k+1) \times n$ Vandermonde matrix is radical and Cohen-Macaulay. Note that this ideal is generated by all Specht polynomials with shape $(n-k,1, …,1)$.


Fröberg, R. and Shapiro, B., On Vandermonde varieties, Math. Scand. 119 (2016), no. 1, 73–91.

Harima, T., Maeno, T., Morita, H., Numata, Y., Wachi, A., and Watanabe, J., The Lefschetz properties, Lecture Notes in Mathematics, vol. 2080, Springer, Heidelberg, 2013.

Miró-Roig, R. M., A note on the multiplicity of determinantal ideals, J. Algebra 299 (2006), no. 2, 714–724.

Miró-Roig, R. M., Determinantal ideals, Progress in Mathematics, vol. 264, Birkhäuser Verlag, Basel, 2008.

Sagan, B. E., The symmetric group: representations, combinatorial algorithms, and symmetric functions, second ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001.

Watanabe, J. and Yanagawa, K., On Specht ideals, in preparation.
How to Cite
Watanabe, J., & Yanagawa, K. (2019). Vandermonde determinantal ideals. MATHEMATICA SCANDINAVICA, 125(2), 179-184.