The K-inductive structure of the noncommutative Fourier transform

  • Samuel G. Walters

Abstract

The noncommutative Fourier transform $\sigma (U)=V^{-1}$, $\sigma (V)=U$ of the irrational rotation C*-algebra $A_\theta $ (generated by canonical unitaries $U$, $V$ satisfying $VU = e^{2\pi i\theta } UV$) is shown to have the following K-inductive structure (for a concrete class of irrational parameters, containing dense $G_\delta $'s). There are approximately central matrix projections $e_1$, $e_2$, $f$ that are σ-invariant and which form a partition of unity in $K_0$ of the fixed-point orbifold $A_\theta ^\sigma $, where $f$ has the form $f = g+\sigma (g) +\sigma ^2(g)+\sigma ^3(g)$, and where $g$ is an approximately central matrix projection as well.

References

Buck, J. and Walters, S., Connes-Chern characters of hexic and cubic modules, J. Operator Theory 57 (2007), no. 1, 35–65.

Echterhoff, S., Lück, W., Phillips, N. C., and Walters, S., The structure of crossed products of irrational rotation algebras by finite subgroups of $\mathrm SL_2(\mathbb Z)$, J. Reine Angew. Math. 639 (2010), 173–221. https://doi.org/10.1515/CRELLE.2010.015

Elliott, G. A. and Evans, D. E., The structure of the irrational rotation $C^*$-algebra, Ann. of Math. (2) 138 (1993), no. 3, 477–501. https://doi.org/10.2307/2946553

Lin, H., Classification of simple tracially AF $C^*$-algebras, Canad. J. Math. 53 (2001), no. 1, 161–194. https://doi.org/10.4153/CJM-2001-007-8

Polishchuk, A., Holomorphic bundles on $2$-dimensional noncommutative toric orbifolds, in “Noncommutative geometry and number theory”, Aspects Math., E37, Friedr. Vieweg, Wiesbaden, 2006, pp. 341--359. https://doi.org/10.1007/978-3-8348-0352-8_16

Walters, S. G., Chern characters of Fourier modules, Canad. J. Math. 52 (2000), no. 3, 633–672. https://doi.org/10.4153/CJM-2000-028-9

Walters, S. G., $K$-theory of non-commutative spheres arising from the Fourier automorphism, Canad. J. Math. 53 (2001), no. 3, 631–672. https://doi.org/10.4153/CJM-2001-026-x

Walters, S. G., The AF structure of non commutative toroidal $\mathbb Z/4\mathbb Z$ orbifolds, J. Reine Angew. Math. 568 (2004), 139–196. https://doi.org/10.1515/crll.2004.015

Walters, S. G., Decomposable projections related to the Fourier and flip automorphisms, Math. Scand. 107 (2010), no. 2, 174–197. https://doi.org/10.7146/math.scand.a-15150

Walters, S. G., Toroidal orbifolds of $\mathbb Z_3$ and $\mathbb Z_6$ symmetries of noncommutative tori, Nuclear Phys. B 894 (2015), 496–526. https://doi.org/10.1016/j.nuclphysb.2015.03.008

Walters, S. G., Continuous fields of projections and orthogonality relations, J. Operator Theory 77 (2017), no. 1, 191–203. https://doi.org/10.7900/jot.2016mar19.2130

Walters, S. G., Semiflat orbifold projections, Houston J. Math. 44 (2018), no. 2, 645–663.
Published
2019-06-17
How to Cite
Walters, S. (2019). The K-inductive structure of the noncommutative Fourier transform. MATHEMATICA SCANDINAVICA, 124(2), 305-319. https://doi.org/10.7146/math.scand.a-114723
Section
Articles