Parabolically induced unitary representations of the universal group $U(F)^+$ are $C_0$

  • Corina Ciobotaru

Abstract

We prove that all parabolically induced unitary representations of the Burger-Mozes universal group $U(F)^{+}$, with $F$ being primitive, are $C_0$. This generalizes the same well-known result for the universal group $U(F)^{+}$, when $F$ is $2$-transitive.

References

Amann, O., Group of tree-automorphisms and their unitary representations, Ph.D. thesis, ETH Zürich, 2003.

Bekka, B., de la Harpe, P., and Valette, A., Kazhdan's property (T), New Mathematical Monographs, vol. 11, Cambridge University Press, Cambridge, 2008. https://doi.org/10.1017/CBO9780511542749

Burger, M. and Mozes, S., Groups acting on trees: from local to global structure, Inst. Hautes Études Sci. Publ. Math. (2000), no. 92, 113–150 (2001).

Caprace, P.-E. and De Medts, T., Simple locally compact groups acting on trees and their germs of automorphisms, Transform. Groups 16 (2011), no. 2, 375–411. https://doi.org/10.1007/s00031-011-9131-z

Ciobotaru, C., Parabolically induced unitary representations of the universal group $U(f)^+$ are $C_0$, long version arXiv:1409.2245v2, 2014.

Ciobotaru, C., A unified proof of the Howe-Moore property, J. Lie Theory 25 (2015), no. 1, 65–89.

Ciobotaru, C., The relative Howe-Moore property for the universal group $U(f)^+$, eprint arXiv:1612.09427, 2016.

Cluckers, R., Cornulier, Y., Louvet, N., Tessera, R., and Valette, A., The Howe-Moore property for real and $p$-adic groups, Math. Scand. 109 (2011), no. 2, 201–224. https://doi.org/10.7146/math.scand.a-15185

Tits, J., Sur le groupe des automorphismes d'un arbre, in “Essays on topology and related topics (Mémoires dédiés à Georges de Rham)'', Springer, New York, 1970, pp. 188-211.
Published
2019-08-29
How to Cite
Ciobotaru, C. (2019). Parabolically induced unitary representations of the universal group $U(F)^+$ are $C_0$. MATHEMATICA SCANDINAVICA, 125(1), 113-134. https://doi.org/10.7146/math.scand.a-114722
Section
Articles