Non-Koszul quadratic Gorenstein toric rings

Authors

  • Kazunori Matsuda

DOI:

https://doi.org/10.7146/math.scand.a-105278

Abstract

Koszulness of Gorenstein quadratic algebras of small socle degree is studied. In this paper, we construct non-Koszul Gorenstein quadratic toric ring such that its socle degree is more than $3$ by using stable set polytopes.

References

Aramova, A., Herzog, J., and Hibi, T., Shellability of semigroup rings, Nagoya Math. J. 168 (2002), 65–84. https://doi.org/10.1017/S0027763000008357

Blum, S., Initially Koszul algebras, Beiträge Algebra Geom. 41 (2000), no. 2, 455–467.

Chappell, T., Friedl, T., and Sanyal, R., Two double poset polytopes, SIAM J. Discrete Math. 31 (2017), no. 4, 2378–2413. https://doi.org/10.1137/16M1091800

Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R., The strong perfect graph theorem, Ann. of Math. (2) 164 (2006), no. 1, 51–229. https://doi.org/10.4007/annals.2006.164.51

Conca, A., Universally Koszul algebras, Math. Ann. 317 (2000), no. 2, 329–346. https://doi.org/10.1007/s002080000100

Conca, A., De Negri, E., and Rossi, M. E., Koszul algebras and regularity, in “Commutative algebra”, Springer, New York, 2013, pp. 285--315. https://doi.org/10.1007/978-1-4614-5292-8_8

Conca, A., Rossi, M. E., and Valla, G., Gröbner flags and Gorenstein algebras, Compositio Math. 129 (2001), no. 1, 95–121. https://doi.org/10.1023/A:1013160203998

Diestel, R., Graph theory, fourth ed., Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-14279-6

Ene, V., Herzog, J., and Hibi, T., Koszul binomial edge ideals, in “Bridging algebra, geometry, and topology”, Springer Proc. Math. Stat., vol. 96, Springer, Cham, 2014, pp. 125--136. https://doi.org/10.1007/978-3-319-09186-0_8

Engström, A. and Norén, P., Ideals of graph homomorphisms, Ann. Comb. 17 (2013), no. 1, 71–103. https://doi.org/10.1007/s00026-012-0169-y

Fröberg, R., Determination of a class of Poincaré series, Math. Scand. 37 (1975), no. 1, 29–39. https://doi.org/10.7146/math.scand.a-11585

Fulkerson, D. R., Hoffman, A. J., and McAndrew, M. H., Some properties of graphs with multiple edges, Canad. J. Math. 17 (1965), 166–177. https://doi.org/10.4153/CJM-1965-016-2

Grayson, D. R. and Stillman, M. E., Macaulay2, a software system for research in algebraic geometry, available at http://www.math.uiuc.edu/Macaulay2/.

Herzog, J., Hibi, T., and Restuccia, G., Strongly Koszul algebras, Math. Scand. 86 (2000), no. 2, 161–178. https://doi.org/10.7146/math.scand.a-14287

Hibi, T., Distributive lattices, affine semigroup rings and algebras with straightening laws, in “Commutative algebra and combinatorics (Kyoto, 1985)'', Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam, 1987, pp. 93--109.

Hibi, T. and Li, N., Chain polytopes and algebras with straightening laws, Acta Math. Vietnam. 40 (2015), no. 3, 447–452. https://doi.org/10.1007/s40306-015-0115-2

Hibi, T. and Matsuda, K., Quadratic Gröbner bases of twinned order polytopes, European J. Combin. 54 (2016), 187–192. https://doi.org/10.1016/j.ejc.2015.12.014

Hibi, T., Matsuda, K., and Ohsugi, H., Strongly Koszul edge rings, Acta Math. Vietnam. 41 (2016), no. 1, 69–76. https://doi.org/10.1007/s40306-014-0097-5

Hibi, T., Matsuda, K., Ohsugi, H., and Shibata, K., Centrally symmetric configurations of order polytopes, J. Algebra 443 (2015), 469–478. https://doi.org/10.1016/j.jalgebra.2015.06.010

Hibi, T., Matsuda, K., and Tsuchiya, A., Gorenstein Fano polytopes arising from order polytopes and chain polytopes, preprint arXiv:1507.03221 [math.CO], 2015.

Hibi, T., Matsuda, K., and Tsuchiya, A., Quadratic Gröbner bases arising from partially ordered sets, Math. Scand. 121 (2017), no. 1, 19–25. https://doi.org/10.7146/math.scand.a-26246

Hibi, T., Nishiyama, K., Ohsugi, H., and Shikama, A., Many toric ideals generated by quadratic binomials possess no quadratic Gröbner bases, J. Algebra 408 (2014), 138–146. https://doi.org/10.1016/j.jalgebra.2013.09.039

Hochster, M., Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. https://doi.org/10.2307/1970791

Ishida, M.-N., Torus embeddings and dualizing complexes, Tôhoku Math. J. (2) 32 (1980), no. 1, 111–146. https://doi.org/10.2748/tmj/1178229687

Mancini, F., Graph modification problems related to graph classes, Ph.D. thesis, University of Bergen, 2008.

Matsuda, K., Strong Koszulness of toric rings associated with stable set polytopes of trivially perfect graphs, J. Algebra Appl. 13 (2014), no. 4, 1350138, 11 pp. https://doi.org/10.1142/S0219498813501387

Matsuda, K. and Ohsugi, H., Reverse lexicographic Gröbner bases and strongly Koszul toric rings, Math. Scand. 119 (2016), no. 2, 161–168. https://doi.org/10.7146/math.scand.a-24741

Matsuda, K., Ohsugi, H., and Shibata, K., Toric rings and ideals of stable set polytopes, preprint arXiv:1603.01850 [math.AC], 2016.

Ohsugi, H., Herzog, J., and Hibi, T., Combinatorial pure subrings, Osaka J. Math. 37 (2000), no. 3, 745–757.

Ohsugi, H. and Hibi, T., Toric ideals generated by quadratic binomials, J. Algebra 218 (1999), no. 2, 509–527. https://doi.org/10.1006/jabr.1999.7918

Ohsugi, H. and Hibi, T., Special simplices and Gorenstein toric rings, J. Combin. Theory Ser. A 113 (2006), no. 4, 718–725. https://doi.org/10.1016/j.jcta.2005.06.002

Priddy, S. B., Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. https://doi.org/10.2307/1995637

Roos, J.-E. and Sturmfels, B., A toric ring with irrational Poincaré-Betti series, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 2, 141–146. https://doi.org/10.1016/S0764-4442(97)89459-1

Shibata, K., Strong Koszulness of the toric ring associated to a cut ideal, Comment. Math. Univ. St. Pauli 64 (2015), no. 1, 71–80.

Stanley, R. P., Hilbert functions of graded algebras, Advances in Math. 28 (1978), no. 1, 57–83. https://doi.org/10.1016/0001-8708(78)90045-2

Sturmfels, B., Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996.

Sturmfels, B., Four counterexamples in combinatorial algebraic geometry, J. Algebra 230 (2000), no. 1, 282–294. https://doi.org/10.1006/jabr.1999.7950

Tate, J., Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14–27.

Downloads

Published

2018-09-05

How to Cite

Matsuda, K. (2018). Non-Koszul quadratic Gorenstein toric rings. MATHEMATICA SCANDINAVICA, 123(2), 161–173. https://doi.org/10.7146/math.scand.a-105278

Issue

Section

Articles