Projection operators on matrix weighted $L^p$ and a simple sufficient Muckenhoupt condition

  • Morten Nielsen
  • Morten Grud Rasmussen

Abstract

Boundedness for a class of projection operators, which includes the coordinate projections, on matrix weighted $L^p$-spaces is completely characterised in terms of simple scalar conditions. Using the projection result, sufficient conditions, which are straightforward to verify, are obtained that ensure that a given matrix weight is contained in the Muckenhoupt matrix $A_p$ class. Applications to singular integral operators with product kernels are considered.

References

Bloom, S., A commutator theorem and weighted BMO, Trans. Amer. Math. Soc. 292 (1985), no. 1, 103–122. https://doi.org/10.2307/2000172

>

Bloom, S., Applications of commutator theory to weighted BMO and matrix analogs of $A_2$, Illinois J. Math. 33 (1989), no. 3, 464–487.

Bownik, M., Inverse volume inequalities for matrix weights, Indiana Univ. Math. J. 50 (2001), no. 1, 383–410. https://doi.org/10.1512/iumj.2001.50.1672

>

Chang, S.-Y. A. and Fefferman, R., Some recent developments in Fourier analysis and $H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 1–43. https://doi.org/10.1090/S0273-0979-1985-15291-7

>

Fefferman, R. and Stein, E. M., Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117–143. https://doi.org/10.1016/S0001-8708(82)80001-7

>

Goldberg, M., Matrix $A_p$ weights via maximal functions, Pacific J. Math. 211 (2003), no. 2, 201–220. https://doi.org/10.2140/pjm.2003.211.201

>

Hunt, R., Muckenhoupt, B., and Wheeden, R., Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. https://doi.org/10.2307/1996205

>

Nielsen, M., On stability of finitely generated shift-invariant systems, J. Fourier Anal. Appl. 16 (2010), no. 6, 901–920. https://doi.org/10.1007/s00041-009-9096-7

>

Ricci, F. and Stein, E. M., Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals, J. Funct. Anal. 73 (1987), no. 1, 179–194. https://doi.org/10.1016/0022-1236(87)90064-4

>

Roudenko, S., Matrix-weighted Besov spaces, Trans. Amer. Math. Soc. 355 (2003), no. 1, 273–314. https://doi.org/10.1090/S0002-9947-02-03096-9

>

Treil, S. and Volberg, A., Continuous frame decomposition and a vector Hunt-Muckenhoupt-Wheeden theorem, Ark. Mat. 35 (1997), no. 2, 363–386. https://doi.org/10.1007/BF02559975

>

Treil, S. and Volberg, A., Wavelets and the angle between past and future, J. Funct. Anal. 143 (1997), no. 2, 269–308. https://doi.org/10.1006/jfan.1996.2986

>

Volberg, A., Matrix $A_p$ weights via $S$-functions, J. Amer. Math. Soc. 10 (1997), no. 2, 445–466. https://doi.org/10.1090/S0894-0347-97-00233-6

>

Published
2018-08-01
How to Cite
Nielsen, M., & Rasmussen, M. (2018). Projection operators on matrix weighted $L^p$ and a simple sufficient Muckenhoupt condition. MATHEMATICA SCANDINAVICA, 123(1), 72-84. https://doi.org/10.7146/math.scand.a-103316
Section
Articles