A short note on Cuntz splice from a viewpoint of continuous orbit equivalence of topological Markov shifts

  • Kengo Matsumoto

Abstract

Let $A$ be an $N\times N$ irreducible matrix with entries in $\{0,1\}$. We present an easy way to find an $(N+3)\times (N+3)$ irreducible matrix $\bar {A}$ with entries in $\{0,1\}$ such that the associated Cuntz-Krieger algebras ${\mathcal {O}}_A$ and ${\mathcal {O}}_{\bar {A}}$ are isomorphic and $\det (1 -A) = - \det (1-\bar {A})$. As a consequence, we find that two Cuntz-Krieger algebras ${\mathcal {O}}_A$ and ${\mathcal {O}}_B$ are isomorphic if and only if the one-sided topological Markov shift $(X_A, \sigma _A)$ is continuously orbit equivalent to either $(X_B, \sigma _B)$ or $(X_{\bar {B}}, \sigma _{\bar {B}})$.

References

Bentmann, R., Cuntz splice invariance for purely infinite graph algebras, Math. Scand. 122 (2018), no. 1, 91-106. https://doi.org/10.7146/math.scand.a-96633

Bowen, R. and Franks, J., Homology for zero-dimensional nonwandering sets, Ann. of Math. (2) 106 (1977), no. 1, 73–92. https://doi.org/10.2307/1971159

Bowen, R. and Lanford III, O. E., Zeta functions of restrictions of the shift transformation, in “Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968)'', Amer. Math. Soc., Providence, R.I., 1970, pp. 43--49.

Cuntz, J., A class of $C^ast $-algebras and topological Markov chains. II. Reducible chains and the Ext-functor for $C^ast $-algebras, Invent. Math. 63 (1981), no. 1, 25–40. https://doi.org/10.1007/BF01389192

Cuntz, J., The classification problem for the $C^ast $-algebras $mathcal O_A$, in “Geometric methods in operator algebras (Kyoto, 1983)'', Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 145--151.

Cuntz, J. and Krieger, W., A class of $C^ast $-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. https://doi.org/10.1007/BF01390048

Eilers, S., Restorff, G., Ruiz, E., and Sørensen, A. P. W., Invariance of the Cuntz splice, Math. Ann. 369 (2017), no. 3-4, 1061–1080. https://doi.org/10.1007/s00208-017-1570-y

Enomoto, M., Fujii, M., and Watatani, Y., $K_0$-groups and classifications of Cuntz-Krieger algebras, Math. Japon. 26 (1981), no. 4, 443–460.

Franks, J., Flow equivalence of subshifts of finite type, Ergodic Theory Dynam. Systems 4 (1984), no. 1, 53–66. https://doi.org/10.1017/S0143385700002261

Lind, D. and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511626302

Matsumoto, K., Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Pacific J. Math. 246 (2010), no. 1, 199–225. https://doi.org/10.2140/pjm.2010.246.199

Matsumoto, K. and Matui, H., Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math. 54 (2014), no. 4, 863–877. https://doi.org/10.1215/21562261-2801849

Parry, B. and Sullivan, D., A topological invariant of flows on $1$-dimensional spaces, Topology 14 (1975), no. 4, 297–299. https://doi.org/10.1016/0040-9383(75)90012-9

Rørdam, M., Classification of Cuntz-Krieger algebras, $K$-Theory 9 (1995), no. 1, 31–58. https://doi.org/10.1007/BF00965458

>

Published
2018-08-01
How to Cite
Matsumoto, K. (2018). A short note on Cuntz splice from a viewpoint of continuous orbit equivalence of topological Markov shifts. MATHEMATICA SCANDINAVICA, 123(1), 91-100. https://doi.org/10.7146/math.scand.a-102939
Section
Articles