Open Access Open Access  Restricted Access Subscription Access

On Segre Numbers of Homogeneous Map Germs

R. Callejas-Bedregal, M. F. Z. Morgado, M. J. Saia


Segre numbers and Segre cycles of ideals were independently introduced by Tworzewski, by Achilles and Manaresi and by Gaffney and Gassler. They are generalization of the Lê numbers and Lê cycles, introduced by Massey. In this article we give Lê-Iomdine type formulas for these cycles and numbers of arbitrary ideals. As a consequence we give a Plücker type formula for the Segre numbers of ideals generated by weighted homogeneous functions, in terms of their weights and degree. As an application of these results, we compute, in a purely combinatorial manner, the Segre numbers of the ideal which defines the critical loci of a map germ defined by a sequence of central hyperplane arrangements in $\mathsf{C}^{n+1}$.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library