Open Access Open Access  Restricted Access Subscription Access

Extension of Derivations, and Connes- Amenability of the Enveloping Dual Banach Algebra

Yemon Choi, Ebrahim Samei, Ross Stokke


If $D:A \to X$ is a derivation from a Banach algebra to a contractive, Banach $A$-bimodule, then one can equip $X^{**}$ with an $A^{**}$-bimodule structure, such that the second transpose $D^{**}: A^{**} \to X^{**}$ is again a derivation. We prove an analogous extension result, where $A^{**}$ is replaced by $\mathsf{F}(A)$, the enveloping dual Banach algebra of $A$, and $X^{**}$ by an appropriate kind of universal, enveloping, normal dual bimodule of $X$.

Using this, we obtain some new characterizations of Connes-amenability of $\mathsf{F}(A)$. In particular we show that $\mathsf{F}(A)$ is Connes-amenable if and only if $A$ admits a so-called $\operatorname{WAP}$-virtual diagonal. We show that when $A=L^1(G)$, existence of a $\operatorname{WAP}$-virtual diagonal is equivalent to the existence of a virtual diagonal in the usual sense. Our approach does not involve invariant means for $G$.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library