Open Access Open Access  Restricted Access Subscription Access

Homeomorphisms of Finite Inner Distortion: Composition Operators on Zygmund-Sobolev and Lorentz-Sobolev Spaces

F. Farroni, R. Giova, G. Moscariello, R. Schiattarella


Let $p > n-1$ and $\alpha\in\mathsf{R}$ and suppose that $f:\Omega\stackrel{\rm onto\,\,}\longrightarrow\Omega^\prime$ is a homeomorphism in the Zygmund-Sobolev space ${\it WL}^{p}\log^{\alpha} L_{\mathop{\rm loc}\nolimits} (\Omega{,}\mathsf{R}^n)$. Define $r{=}\frac p {p-n+1}$. Assume that $u{\in}{\it WL}^r\log^{-\alpha(r-1)} L_{\mathop{\rm loc}\nolimits}(\Omega)$. Then $u\circ\smash{f^{-1}}\in {\rm BV}_{\mathop{\rm loc}\nolimits}(\Omega^\prime)$. We obtain a similar result whenever $f$ is a homeomorphism in the Lorentz-Sobolev space ${\it WL}^{p,q}_{\mathop{\rm loc}\nolimits} (\Omega,\mathsf{R}^n)$ with $p,q>n-1$ and $u\in {\it WL}^{r,s}_{\mathop{\rm loc}\nolimits}(\Omega)$ with $r$ as before and $s=\frac q {q-n+1}$. Moreover, if we further assume that $f$ has finite inner distortion we obtain in both cases $u\circ \smash{f^{-1}}\in W^{1,1}_{\mathop{\rm loc}\nolimits}(\Omega^\prime)$.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library