Open Access Open Access  Restricted Access Subscription Access

Application of Localization to the Multivariate Moment Problem

Murray Marshall


It is explained how the localization technique introduced by the author in [19] leads to a useful reformulation of the multivariate moment problem in terms of extension of positive semidefinite linear functionals to positive semidefinite linear functionals on the localization of $\mathsf{R}[\underline{x}]$ at $p = \prod_{i=1}^n(1+x_i^2)$ or $p' = \prod_{i=1}^{n-1}(1+x_i^2)$. It is explained how this reformulation can be exploited to prove new results concerning existence and uniqueness of the measure $\mu$ and density of $\mathsf{C}[\underline{x}]$ in $\mathscr{L}^s(\mu)$ and, at the same time, to give new proofs of old results of Fuglede [11], Nussbaum [21], Petersen [22] and Schmüdgen [27], results which were proved previously using the theory of strongly commuting self-adjoint operators on Hilbert space.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library