Open Access Open Access  Restricted Access Subscription Access

Strict U-Ideals and U-Summands in Banach Spaces

Trond A. Abrahamsen


For a strict u-ideal $X$ in a Banach space $Y$ we show that the set of points in the dual unit ball $B_{X^{\ast}}$, strongly exposed by points in the range $\it TY$ of the unconditional extension operator $T$ from $Y$ into the bidual $X^{\ast\ast}$ of $X$, is contained in the weak$^{\ast}$ denting points in $B_{X^{\ast}}$. We also prove that a u-embedded space is a u-summand if and only if it contains no copy of $c_0$ if and only if it is weakly sequentially complete.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library