Open Access Open Access  Restricted Access Subscription Access

Numerical Radius Inequalities for Several Operators

Omar Hirzallah, Fuad Kittaneh


Let $A$, $B$, $X$, and $A_{1},\dots,A_{2n}$ be bounded linear operators on a complex Hilbert space. It is shown that \[ w\Bigl(\sum_{k=1}^{2n-1}A_{k+1}^{\ast}XA_{k}+A_{1}^{\ast}XA_{2n}\Bigr) \leq 2\Bigl( \sum_{k=1}^{n}\Vert A_{2k-1}\Vert^{2}\Bigr)^{1/2}\Bigl(\sum_{k=1}^{n}\left\Vert A_{2k}\right\Vert^{2}\Bigr)^{1/2}w(X) \] and \[ w(AB\pm BA)\leq 2\sqrt{2}\,\Vert B\Vert \sqrt{w^{2}(A)-\frac{\vert \Vert {\operatorname{Re} A}\Vert^{2}-\Vert {\operatorname{Im} A}\Vert^{2}\vert}{2}}, \] where $w(\cdot)$ and $\left\Vert \cdot \right\Vert$ are the numerical radius and the usual operator norm, respectively. These inequalities generalize and refine some earlier results of Fong and Holbrook. Some applications of our results are given.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library