On the Modulus of Continuity of Mappings Between Euclidean Spaces

Dieudonné Agbor, Jan Boman


Let $f$ be a function from $\mathbf{R}^p$ to $\mathbf{R}^q$ and let $\Lambda$ be a finite set of pairs $(\theta, \eta) \in \mathbf{R}^p \times \mathbf{R}^q$. Assume that the real-valued function $\langle\eta, f(x)\rangle$ is Lipschitz continuous in the direction $\theta$ for every $(\theta, \eta) \in \Lambda$. Necessary and sufficient conditions on $\Lambda$ are given for this assumption to imply each of the following: (1) that $f$ is Lipschitz continuous, and (2) that $f$ is continuous with modulus of continuity $\le C\epsilon |{\log \epsilon}|$.

Full Text:


DOI: http://dx.doi.org/10.7146/math.scand.a-15238


  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library