Poincaré Series of some Hypergraph Algebras

E. Emtander, R. Fröberg, F. Mohammadi, S. Moradi


A hypergraph $H=(V,E)$, where $V=\{x_1,\ldots,x_n\}$ and $E\subseteq 2^V$ defines a hypergraph algebra $R_H=k[x_1,\ldots, x_n]/(x_{i_1}\cdots x_{i_k}; \{i_1,\ldots,i_k\}\in E)$. All our hypergraphs are $d$-uniform, i.e., $|e_i|=d$ for all $e_i\in E$. We determine the Poincaré series $P_{R_H}(t)=\sum_{i=1}^\infty\dim_k\mathrm{Tor}_i^{R_H}(k,k)t^i$ for some hypergraphs generalizing lines, cycles, and stars. We finish by calculating the graded Betti numbers and the Poincaré series of the graph algebra of the wheel graph.

Full Text:


DOI: http://dx.doi.org/10.7146/math.scand.a-15229


  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library