Nontrivially Noetherian $C^*$-algebras

Taylor Hines, Erik Walsberg

Abstract


We say that a $C^*$-algebra is Noetherian if it satisfies the ascending chain condition for two-sided closed ideals. A nontrivially Noetherian $C^*$-algebra is one with infinitely many ideals. Here, we show that nontrivially Noetherian $C^*$-algebras exist, and that a separable $C^*$-algebra is Noetherian if and only if it contains countably many ideals and has no infinite strictly ascending chain of primitive ideals. Furthermore, we prove that every Noetherian $C^*$-algebra has a finite-dimensional center. Where possible, we extend results about the ideal structure of $C^*$-algebras to Artinian $C^*$-algebras (those satisfying the descending chain condition for closed ideals).

Full Text:

PDF


DOI: http://dx.doi.org/10.7146/math.scand.a-15219

Refbacks

  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.
OK


ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library