The sectorial projection defined from logarithms

Gerd Grubb


For a classical elliptic pseudodifferential operator $P$ of order $>0$ on a closed manifold $X$, such that the eigenvalues of the principal symbol $p_m(x,\xi)$ have arguments in $]\theta ,\varphi [$ and $]\varphi ,\theta +2\pi [$ ($\theta <\varphi <\theta +2\pi$), the sectorial projection $\Pi_{\theta,\varphi}(P)$ is defined essentially as the integral of the resolvent along $ e^{i\varphi}\overline{\mathrm R}_{+}\cup e^{i\theta}\overline{\mathrm R}_{+}$. In a recent paper, Booss-Bavnbek, Chen, Lesch and Zhu have pointed out that there is a flaw in several published proofs that $\Pi_{\theta,\varphi}(P)$ is a $\psi$do of order 0; namely that $p_m(x,\xi)$ cannot in general be modified to allow integration of $(p_m(x,\xi )-\lambda)^{-1}$ along $ e^{i\varphi}\overline{\mathrm R}_{+}\cup e^{i\theta}\overline{\mathrm R}_{+}$ simultaneously for all $\xi$. We show that the structure of $\Pi_{\theta,\varphi}(P)$ as a $\psi$do of order 0 can be deduced from the formula $\Pi_{\theta,\varphi}(P)=\frac {i}{2\pi}(\log_{\theta} P - \log_{\varphi} P)$ proved in an earlier work (coauthored with Gaarde). In the analysis of $\log_{\theta} P$ one need only modify $p_m(x,\xi)$ in a neighborhood of $e^{i\theta}\overline{\mathrm R}_{+}$ this is known to be possible from Seeley's 1967 work on complex powers.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library