Minimizing roots of maps into the two-sphere

Marcio Colombo Fenille


This article is a study of the root theory for maps from two-dimensional CW-complexes into the 2-sphere. Given such a map $f:K\rightarrow S^2$ we define two integers $\zeta(f)$ and $\zeta(K,d_f)$, which are upper bounds for the minimal number of roots of $f$, denote be $\mu(f)$. The number $\zeta(f)$ is only defined when $f$ is a cellular map and $\zeta(K,d_f)$ is defined when $K$ is homotopy equivalent to the 2-sphere. When these two numbers are defined, we have the inequality $\mu(f)\leq\zeta(K,d_f)\leq\zeta(f)$, where $d_f$ is the so-called homological degree of $f$. We use these results to present two very interesting examples of maps from 2-complexes homotopy equivalent to the sphere into the sphere.

Full Text:




  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library