On the real rank of $C^\ast$-algebras of nilpotent locally compact groups

Robert J. Archbold, Eberhard Kaniuth


If $G$ is an almost connected, nilpotent, locally compact group then the real rank of the $C^\ast$-algebra $C^\ast (G)$ is given by $\operatorname {RR} (C^\ast (G)) = \operatorname {rank} (G/[G,G]) = \operatorname {rank} (G_0/[G_0,G_0])$, where $G_0$ is the connected component of the identity element. In particular, for the continuous Heisenberg group $G_3$, $\operatorname {RR} C^\ast (G_3))=2$.

Full Text:


DOI: http://dx.doi.org/10.7146/math.scand.a-15199


  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.

ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library