On the relation of Carleson's embedding and the maximal theorem in the context of Banach space geometry

Tuomas Hytönen, Mikko Kemppainen

Abstract


Hytönen, McIntosh and Portal (J. Funct. Anal., 2008) proved two vector-valued generalizations of the classical Carleson embedding theorem, both of them requiring the boundedness of a new vector-valued maximal operator, and the other one also the type $p$ property of the underlying Banach space as an assumption. We show that these conditions are also necessary for the respective embedding theorems, thereby obtaining new equivalences between analytic and geometric properties of Banach spaces.

Full Text:

PDF


DOI: http://dx.doi.org/10.7146/math.scand.a-15189

Refbacks

  • There are currently no refbacks.
This website uses cookies to allow us to see how the site is used. The cookies cannot identify you or any content at your own computer.
OK


ISSN 0025-5521 (print) ISSN 1903-1807 (online)

Hosted by the Royal Danish Library