TY - JOUR AU - Moslehian, Mohammad Sal AU - Zamani, Ali PY - 2018/04/08 Y2 - 2024/03/28 TI - Mappings preserving approximate orthogonality in Hilbert $C^*$-modules JF - MATHEMATICA SCANDINAVICA JA - Math. Scand. VL - 122 IS - 2 SE - Articles DO - 10.7146/math.scand.a-102945 UR - https://www.mscand.dk/article/view/102945 SP - 257-276 AB - <p>We introduce a notion of approximate orthogonality preserving mappings between Hilbert $C^*$-modules. We define the concept of $(\delta , \varepsilon )$-orthogonality preserving mapping and give some sufficient conditions for a linear mapping to be $(\delta , \varepsilon )$-orthogonality preserving. In particular, if $\mathscr {E}$ is a full Hilbert $\mathscr {A}$-module with $\mathbb {K}(\mathscr {H})\subseteq \mathscr {A} \subseteq \mathbb {B}(\mathscr {H})$ and $T, S\colon \mathscr {E}\to \mathscr {E}$ are two linear mappings satisfying $|\langle Sx, Sy\rangle | = \|S\|^2|\langle x, y\rangle |$ for all $x, y\in \mathscr {E}$ and $\|T - S\| \leq \theta \|S\|$, then we show that $T$ is a $(\delta , \varepsilon )$-orthogonality preserving mapping. We also prove whenever $\mathbb {K}(\mathscr {H})\subseteq \mathscr {A} \subseteq \mathbb {B}(\mathscr {H})$ and $T\colon \mathscr {E} \to \mathscr {F}$ is a nonzero $\mathscr {A}$-linear $(\delta , \varepsilon )$-orthogonality preserving mapping between $\mathscr {A}$-modules, then \[ \bigl \|\langle Tx, Ty\rangle - \|T\|^2\langle x, y\rangle \bigr \|\leq \frac {4(\varepsilon - \delta )}{(1 - \delta )(1 + \varepsilon )} \|Tx\|\|Ty\|\qquad (x, y\in \mathscr {E}). \] As a result, we present some characterizations of the orthogonality preserving mappings.</p> ER -