On vector bundles for a Morse decomposition of $L\mathbb{C}\mathrm{P}^n$

  • Iver Ottosen

Abstract

We give a description of the negative bundles for the energy integral on the free loop space $L\mathbb{C}\mathrm{P}^n$ in terms of circle vector bundles over projective Stiefel manifolds. We compute the mod $p$ Chern classes of the associated homotopy orbit bundles.

References

Atiyah, M. F., $K$-theory, Lecture notes by D. W. Anderson, W. A. Benjamin, Inc., New York-Amsterdam, 1967.

Bökstedt, M., Hsiang, W. C., and Madsen, I., The cyclotomic trace and algebraic $K$-theory of spaces, Invent. Math. 111 (1993), no. 3, 465–539. https://doi.org/10.1007/BF01231296

>

tom Dieck, T., Transformation groups, De Gruyter Studies in Mathematics, vol. 8, Walter de Gruyter & Co., Berlin, 1987. https://doi.org/10.1515/9783110858372.312

>

Gallot, S., Hulin, D., and Lafontaine, J., Riemannian geometry, second ed., Universitext, Springer-Verlag, Berlin, 1990. https://doi.org/10.1007/978-3-642-97242-3

>

Gromoll, D. and Meyer, W., Periodic geodesics on compact Riemannian manifolds, J. Differential Geometry 3 (1969), 493–510.

Hatcher, A., Vector bundles and $K$-theory, http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html, 2009.

Hingston, N., On the growth of the number of closed geodesics on the two-sphere, Internat. Math. Res. Notices (1993), no. 9, 253–262. https://doi.org/10.1155/S1073792893000285

>

Husemoller, D., Fibre bundles, third ed., Graduate Texts in Mathematics, vol. 20, Springer-Verlag, New York, 1994. https://doi.org/10.1007/978-1-4757-2261-1

>

Klingenberg, W., The space of closed curves on the sphere, Topology 7 (1968), 395–415. https://doi.org/10.1016/0040-9383(68)90015-3

>

Klingenberg, W., The space of closed curves on a projective space, Quart. J. Math. Oxford Ser. (2) 20 (1969), 11–31. https://doi.org/10.1093/qmath/20.1.11

>

Klingenberg, W., Lectures on closed geodesics, Springer-Verlag, Berlin-New York, 1978, Grundlehren der Mathematischen Wissenschaften, Vol. 230.

Kobayashi, S. and Nomizu, K., Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, no. 15, John Wiley & Sons, Inc., New York-London-Sydney, 1969.

Madsen, I. and Tornehave, J., From calculus to cohomology, Cambridge University Press, Cambridge, 1997.

Ndombol, B. and El Haouari, M., The free loop space equivariant cohomology algebra of some formal spaces, Math. Z. 266 (2010), no. 4, 863–875. https://doi.org/10.1007/s00209-009-0602-z

>

Ottosen, I. and Bökstedt, M., String cohomology groups of complex projective spaces, Algebr. Geom. Topol. 7 (2007), 2165–2238. https://doi.org/10.2140/agt.2007.7.2165

>

Vigué-Poirrier, M. and Sullivan, D., The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976), no. 4, 633–644.

Ziller, W., The free loop space of globally symmetric spaces, Invent. Math. 41 (1977), no. 1, 1–22. https://doi.org/10.1007/BF01390161

>

Published
2017-10-22
How to Cite
Ottosen, I. (2017). On vector bundles for a Morse decomposition of $L\mathbb{C}\mathrm{P}^n$. MATHEMATICA SCANDINAVICA, 121(2), 186-218. https://doi.org/10.7146/math.scand.a-96622
Section
Articles