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WORONOWICZ TANNAKA-KREIN DUALITY AND
FREE ORTHOGONAL QUANTUM GROUPS

SARA MALACARNE∗

Abstract
Given a finite-dimensional Hilbert space H and a collection of operators between its tensor powers
satisfying certain properties, we give a short proof of the existence of a compact quantum group G

with a fundamental representation U on H such that the intertwiners between the tensor powers
of U coincide with the given collection of operators. We then explain how the general version of
Woronowicz Tannaka-Krein duality can be deduced from this.

Introduction

The aim of the paper is to give a short proof of Woronowicz Tannaka-Krein
duality Theorem [8] using only basic tools of finite-dimensional algebra. We
consider a finite-dimensional Hilbert space H and a collection of operators
between its tensor powers satisfying certain properties. Categorically speak-
ing, we deal with a C∗-tensor category with conjugates that is a subcategory
of the category of finite-dimensional Hilbert spaces, Hilbf , and assume that
such category is generated by one self-conjugate Hilbert space. We prove the
existence of a compact quantum group G, such that its representation category
Rep G is our given category. The proof consists of an explicit reconstruction of
the Hopf ∗-algebraC[G], generated by the coefficients of all finite-dimensional
representations of G. The relations defining such Hopf ∗-algebra are directly
obtained through morphisms in the category, or equivalently, through the col-
lection of operators between tensor powers of H . The version of the Woronow-
icz Tannaka-Krein Theorem that we prove is essentially formulated in the paper
by T. Banica and R. Speicher [2], where the duality is used for the construction
of new examples of free quantum groups, via subcategories of the so-called
categories of non-crossing partitions. Even though the proof presented here
is, in many respects, similar to the proofs of Woronowicz Tannaka-Krein du-
ality appearing in [8] and [4], we wish to point out that this version is more
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algebraic, mostly category-free and the key part is based on simple duality
statements for finite-dimensional vector spaces. Related to this reconstruction
process, it is also important to mention P. Schauenburg’s paper [5], in which
a proof of Tannaka-Krein duality is given in a more general setting: monoidal
categories that are not semisimple are considered and, correspondingly, arbit-
rary Hopf algebras are recovered. We refer to [3] for a general introduction
to Tannaka-Krein duality and the more general Woronowicz Tannaka-Krein
duality theorem.

The paper is structured in the following way: in Section 1 we define a
bialgebra, which we will later prove to be the Hopf ∗-algebra C[G]. The
relations defining this bialgebra are obtained from the collection of operators
between tensor powers of H , denoted by C . In Section 2 we prove that the
bialgebra defined in Section 1 can be equipped with a Hopf ∗-algebra structure.
For this we first consider a smaller collection of operators, CF , and show that
they define the free orthogonal quantum group O+

F , [7]. We want to stress that
nothing, apart from the fact that C[O+

F ] is a well-defined Hopf ∗-algebra, is
used. In Section 3 we prove the equivalence between the C∗-tensor category
generated by one self-dual Hilbert space H and Rep G. In Section 4 we show
how the particular case analysed in Section 3 can be extended to the general
case of a not necessarily finitely generated C∗-tensor category.

Acknowledgements. I would like to thank my supervisor Sergey Nesh-
veyev for his help and precious advice throughout this work. I am grateful
to Teodor Banica for useful suggestions. Thanks also to Marco Matassa for
fruitful discussions.

1. Singly generated categories of Hilbert spaces

Our goal is to prove the following version of Woronowicz Tannaka-Krein
duality.

Theorem 1.1. Let H be a finite-dimensional Hilbert space. Suppose we
are given a collection C of spaces C (k, �) of operators H⊗k → H⊗� for all
k, � ≥ 0 satisfying the following properties:

(1) if T , S ∈ C , then T ⊗ S ∈ C ;

(2) if T , S ∈ C are composable, then T S ∈ C ;

(3) T ∈ C implies T ∗ ∈ C ;

(4) C (k, k) contains the identity operator for all k ≥ 0;

(5) C (0, 2) contains an operator R such that (R∗ ⊗ ι)(ι ⊗ R) = ±ι on H .

Then there exists a unique up to isomorphism compact quantum group G with
a self-conjugate fundamental representation U on H such that HomG(H⊗k,

H⊗�) = C (k, �) for all k, � ≥ 0.
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In the last section we will discuss how the general form of Woronowicz
Tannaka-Krein duality can be easily deduced from this.

Denote by A the tensor algebra of the space of linear functionals on B(H),
i.e.,

A := T
(
B(H)∗

) =
∞⊕

k=0

B
(
H⊗k

)∗
.

Let U ∈ B(H) ⊗ B(H)∗ ⊂ B(H) ⊗ A be the “fundamental matrix” of A ,
so U is characterized by the property

(ι ⊗ T )(U) = T ∀ T ∈ B(H). (1.1)

In other words,
U :=

∑
i,j

eij ⊗ uij ,

where the eij ’s are matrix units in B(H) and {uij }i,j is the dual basis of B(H)∗
such that uij (ekl) = δikδjl . The tensor algebra A is a bialgebra with comulti-
plication � defined by duality from the multiplication on B(H), so that

�(uij ) =
∑

k

uik ⊗ ukj ,

or equivalently, using the leg-numbering notation, (ι ⊗ �)(U) = U12U13.
Next, denote by An ⊂ A the subspace given by

An :=
n⊕

k=0

B
(
H⊗k

)∗ =
( n⊕

k=0

B
(
H⊗k

))∗
,

and denote by Bn the commutant

Bn :=
( n⊕

k,�=0

C (k, �)

)′
⊆

n⊕
k=0

B
(
H⊗k

) ⊂ B

( n⊕
k=0

H⊗k

)
.

Finally, let
In := { a ∈ An : a|Bn

= 0 },
and denote by I the union I := ⋃∞

n=0 In. Note that In+1 ∩ An = In, so
I is a subspace of A . Indeed, let Cn = (⊕n

k,�=0C (k, �)
) = B ′

n and denote
by pn the projection ⊕n+1

k=0H
⊗k → ⊕n

k=0H
⊗k . By definition pn ∈ Cn+1 and

pnCn+1pn = Cn. Hence Bn+1pn = Bn, by the Bicommutant Theorem (see
e.g. [6, Section 3]).

Lemma 1.2. I is a bi-ideal in the bialgebra A .
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Proof. We will first prove that I is an ideal. Assume a ∈ In and b ∈
B(H⊗m)∗; we have to check that a ⊗ b vanishes on

(⊕n+m
k,�=mC (k, �)

)′
. Since(⊕n+m

k,�=mC (k, �)
)′ ⊆ (⊕n

k,�=0C (k, �)
)′⊗(⊕m

k,�=0C (k, �)
)′

, the statement simply

follows from the assumption that a vanishes on
(⊕n

k=0C (k, �)
)′

.
To prove that I is a coideal we have to show that �(I ) ⊆ I ⊗A +A ⊗I .

For this purpose we use an equivalent definition of I , that is, we consider the
space spanned by the slices

(ω ⊗ ι)
(
(T ⊗ 1)U⊗k − U⊗�(T ⊗ 1)

)
(1.2)

for all ω ∈ B(H⊗k, H⊗�)∗, T ∈ C (k, �) and k, � ≥ 0. This space indeed
coincides with I , since using (1.1) we see that an operator S ∈ ⊕n

k=0B(H⊗k)

vanishes on the elements (1.2) for all k, � ≤ n if and only it lies in Bn. We
choose an orthonormal basis of H⊗k , {ξj }j , and of H⊗�, {ηi}i , and assume ω

is of the form ωij = 〈 · ξj , ηi〉. We set V := U⊗k and W := U⊗�. Then, using
the leg-numbering notation,

�(ωij ⊗ ι)
(
(T ⊗ 1)V − W(T ⊗ 1)

)
is equal to

(ωij ⊗ ι ⊗ ι)
(
(T ⊗ 1 ⊗ 1)V12V13 − W12W13(T ⊗ 1 ⊗ 1)

)
.

The expression in the parentheses can be written as
(
(T ⊗1⊗1)V12−W12(T ⊗1⊗1)

)
V13+W12

(
(T ⊗1⊗1)V13−W13(T ⊗1⊗1)

)
.

Now, if we just consider the first part of the sum

(ωij ⊗ ι ⊗ ι)
((

(T ⊗ 1 ⊗ 1)V12 − W12(T ⊗ 1 ⊗ 1)
)
V13

)
,

it can be expressed as
∑

k

(ωik ⊗ ι ⊗ ι)
(
(T ⊗ 1 ⊗ 1)V12 − W12(T ⊗ 1 ⊗ 1)

)
(ωkj ⊗ ι ⊗ ι)(V13),

which belongs to I ⊗ A . Similarly the other part lies in A ⊗ I , as wanted.

By the previous Lemma, A/I is a bialgebra (in the notation of [3], the
description of A/I via slice maps corresponds to the coend of the forgetful
functor, End∨). What we wish to prove is that A/I ∼= C[G], for a compact
quantum group G, and to do so we need for A/I to be a Hopf ∗-algebra and
for U to be unitary (see Theorem 1.6.7 of [4]), and this is not obvious written
in this manner. In fact it is not even clear whether A/I has a ∗-structure. We
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shall proceed with an intermediate step. The idea is the following: we will
introduce another bi-ideal in A , IF , and show that A/IF

∼= C[O+
F ], where

O+
F is the free orthogonal quantum group. Thus, A/IF will automatically

inherit a Hopf ∗-algebra structure. Finally we will show that I /IF is a Hopf
∗-ideal in A/IF and then conclude that there exists a compact quantum group
G such that

A/I ∼= A/IF

/
I /IF

∼= C[G],

again by Theorem 1.6.7 of [4].

2. Representation category of a free orthogonal quantum group

Following the strategy described above, we now consider the case when C is
the smallest collection of spaces as in Theorem 1.1 containing a fixed operator
R:C → H⊗2 such that (R∗ ⊗ ι)(ι ⊗ R) = ±ι. It is known, and not difficult
to see, that if we fix an orthonormal basis e1, . . . , en in H , then R has the
form (ι ⊗ F)r , where r:C → H ⊗ H is given by r(1) = ∑

i ei ⊗ ei and
F ∈ GLn(C) is such that FF̄ = ±1, where F̄ is the matrix obtained from F

by taking the complex conjugate of every entry. We will use the subindex F

for the constructions of the previous section related to this smallest collection,
so we write CF , BF,n, IF,n, etc.

Consider the universal unital algebra C[O+
F ] generated by entries of a unit-

ary matrix U = (uij )i,j satisfying the relations

UF tUt(F−1)t = 1, F tU t (F−1)tU = 1.

for an invertible n by n matrix F . It is again known and easy to see that this is
a Hopf ∗-algebra with comultiplication �(uij ) = ∑

k uik ⊗ukj and involution
given by U ∗ = F tUt (F−1)t . The compact quantum group O+

F thus defined
is known in literature as the free orthogonal quantum group [7], [1], but we
do not need to know any properties of this quantum group apart from the fact
that it is well defined. The following Lemma is a simple consequence of our
definitions.

Lemma 2.1. We have A/IF
∼= C[O+

F ].

Proof. By definition, the bialgebra C[O+
F ] can be written as A/L where

L is the ideal generated by the elements

(
F t − (UF tUt )

)
ij
,

(
(F−1)t − Ut(F−1)tU

)
ij
, ∀i, j,

with U ∈ B(H) ⊗ A being the fundamental matrix of A . In order to prove
the Lemma we need to show that IF = L . To show that L ⊆ IF , consider
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the linear functionals ω1,ij := 〈 · 1, ei ⊗ ej 〉 ∈ B(C, H⊗2)∗ and ωij,1 :=
〈 · ei ⊗ ej , 1〉 ∈ B(H⊗2,C)∗. Then

(
F t − (UF tUt )

)
ij

= (ω1,ij ⊗ ι)
(
(R ⊗ ι) − U⊗2(R ⊗ ι)

)

and

(
(F−1)t − Ut(F−1)tU

)
ij

= ±(ωij,1 ⊗ ι)
(
(R∗ ⊗ ι) − (R∗ ⊗ ι)U⊗2

)
,

where we recall that R = (ι ⊗ F)r and in the second equality we use that
F ∗ = ±(F−1)t . Hence L ⊆ IF .

Conversely, let us show that IF ⊆ L . As follows from the above identities,
R and R∗ are morphisms in the category Rep O+

F . It follows that any operator
in CF is a morphism in Rep O+

F . But this implies IF ⊆ L because any relation
defined by elements of CF has to be satisfied in C[O+

F ].

3. Proof of the Theorem

We now turn to a general C as in Theorem 1.1. Let R ∈ C (0, 2) be an operator
such that (R∗ ⊗ ι)(ι⊗R) = ±ι. As in the previous section, we fix an orthonor-
mal basis e1, . . . , en in H and write R as (ι ⊗ F)r . Denote by J the bi-ideal
I /IF in C[O+

F ] = A/IF . Note that J can still be described as the space
spanned by the elements (ω⊗ ι)

(
(T ⊗1)U⊗k −U⊗�(T ⊗1)

)
, for T ∈ C (k, �)

and ω ∈ B(H⊗k, H⊗�)∗, where we slightly abuse the notation and denote by
the same symbol U the fundamental matrix of A and its image in C[O+

F ].

Lemma 3.1. J is a Hopf ∗-ideal in C[O+
F ].

Proof. We denote by S the antipode of C[O+
F ]. Since J is a bi-ideal, we

only need to check that J is closed under taking the adjoints and is invariant
under S. Let a∗ = (ω ⊗ ι)

(
(T ⊗ 1)U⊗k − U⊗�(T ⊗ 1)

)∗
.

We have to show that it lies in J for any k, � ≥ 0. We first note that C (1, 1)

is closed under the operation ∨ defined by

(ι ⊗ T )R = (T ∨ ⊗ ι)R, since T ∨ = ±(ι ⊗ R∗)(ι ⊗ T ⊗ ι)(R ⊗ ι).

As (ι ⊗ T )r = (T t ⊗ ι)r , we have T ∨ = (F−1T F)t , and the inverse op-
eration, still preserving C (1, 1), is T �→ FT tF−1. We recall from the pre-
vious section that we also have U ∗ = F tUt (F−1)t . Analogous formulas
hold for T ∈ C (k, �). In fact, if we write Fk = F⊗k and Uk = U⊗k , then
T ∨ = (F−1

� T Fk)
t ∈ C (�, k) and U ∗

k = F t
kU

t
k(F

−1
k )t . Therefore, choosing an

orthonormal basis of H⊗k , {ξj }j , and of H⊗�, {ηi}i , and assuming ω is of the



WORONOWICZ TANNAKA-KREIN DUALITY 157

form ωij = 〈 · ξj , ηi〉, we have

a∗ = (ωij ⊗ ι)
(
(T ⊗ 1)Uk − U�(T ⊗ 1)

)∗

= (ωji ⊗ ι)
(
U ∗

k (T ∗ ⊗ 1) − (T ∗ ⊗ 1)U ∗
�

)

= (ωji ⊗ ι)
((

((T ∗)t ⊗ 1)(U ∗
k )t − (U ∗

� )t ((T ∗)t ⊗ 1)
)t

)

= (ωij ⊗ ι)
(
((T ∗)t ⊗ 1)(U ∗

k )t − (U ∗
� )t ((T ∗)t ⊗ 1)

)
= (ωij ⊗ ι)

(
((T ∗)t ⊗ 1)(F−1

k UkFk) − (F−1
� U�F�)((T

∗)t ⊗ 1)
)

= (ωij ⊗ ι)
(
(F−1

� ⊗ 1)
(
(F�(T

∗)tF−1
k ⊗ 1)Uk

− U�(F�(T
∗)tF−1

k ⊗ 1)
)
(Fk ⊗ 1)

)

=
∑
m,n

(F−1
� )im(Fk)nj (ωmn ⊗ ι)

(
(T̃ ⊗ ι)Uk − U�(T̃ ⊗ ι)

)
,

where T̃ = F�(T
∗)tF−1

k ∈ C (k, �), since T �→ F�T
tF−1

k is a map from
C (�, k) to C (k, �), being the inverse operation of ∨. Hence, a∗ ∈ J .

The invariance of J under the antipode immediately follows from its in-
variance under involution. If a = (ωij ⊗ ι)

(
(T ⊗ 1)Uk − U�(T ⊗ 1)

)
, then

S(a) = (ωij ⊗ ι)
(
(T ⊗ 1)(ι ⊗ S)(Uk) − (ι ⊗ S)(U�)(T ⊗ 1)

)
= (ωij ⊗ ι)

(
(T ⊗ 1)U ∗

k − U ∗
� (T ⊗ 1)

)
= (ωji ⊗ ι)

(
Uk(T

∗ ⊗ 1) − (T ∗ ⊗ 1)U�

)∗ ∈ J .

Given the above Lemma, we conclude that there exists a compact quantum
group G such that A/I ∼= C[G]. It remains to show that HomG(H⊗k, H⊗�) =
C (k, �), and this is done in the following.

Lemma 3.2. We have HomG(H⊗k, H⊗�) = C (k, �) for all k, � ≥ 0.

Proof. We have to show that for every n,

n⊕
k,�=0

C (k, �) = EndG

( n⊕
k=0

H⊗k

)
.

As both sides are (finite-dimensional) von Neumann algebras, the equality is
equivalent to the equality of their commutants:

Bn = EndG

( n⊕
k=0

H⊗k

)′
.
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Recall now that for any finite-dimensional representation V ∈ B(HV ) ⊗
C[G] of a compact quantum group G we have a representation πV of the
algebra C[G]∗ on HV defined by πV (φ) = (ι⊗φ)(V ), and then πV (C[G]∗) =
EndG(HV )′. Therefore we have to show that π⊕n

k=0 U⊗k (C[G]∗) = Bn. But this
immediately follows from the previous Lemma, asC[G] = A/I ⊃ An/In =
B∗

n .

To finish the proof of Theorem 1.1 we have to show that the compact
quantum group G is unique up to isomorphism. Let G′ be another compact
quantum group satisfying the assumptions of Theorem 1.1, that is, having a
fundamental representation V = (vij )ij on H such that HomG′(H⊗k, H⊗�) =
C (k, �). We can identify C[G′] with A/I ′, for a bi-ideal I ′ ⊂ A . The only
thing to check is that the bi-ideal I ′ is completely determined by the operator
spaces C (k, �). Since C (k, �) and HomG′(H⊗k, H⊗�) coincide, from the proof
of Lemma 3.2 we see that this implies that An/I ′

n = B∗
n , where I ′

n = I ′ ∩An

and I ′ = ⋃
n≥0 I ′

n. Hence, the spaces I ′
n are completely determined by the

spaces C (k, �). Thus Theorem 1.1 is proved.

4. General version of the Tannaka-Krein duality

In this section we want to explain, without too many details, how using The-
orem 1.1 one can recover the following result.

Theorem 4.1 (Woronowicz Tannaka-Krein duality). Let C be an essen-
tially small C∗-tensor category with conjugates, τ : C → Hilbf be a unitary
fiber functor. Then there exists a compact quantum group G and a unitary mon-
oidal equivalence θ : C → Rep G such that τ is naturally unitarily monoidally
isomorphic to the composition of the canonical fiber functorπ : Rep G → Hilbf

with θ . Furthermore, the Hopf ∗-algebra (C[G], �) for such a G is uniquely
determined up to isomorphism.

We remark that for C∗-tensor categories we follow the conventions of [4],
in particular, we assume that they are closed under finite direct sums and
subobjects.

We concentrate only on the existence of G. We may assume that C is a
subcategory of Hilbf and τ is the embedding functor. If there exist an object H

in C such that any other object is isomorphic to a subobject of H⊗n for some
n ≥ 0, and a morphism R:C → H ⊗ H such that (R∗ ⊗ ι)(ι ⊗ R) = ±ι, then
the result follows from Theorem 1.1. For general C let us distinguish between
three cases:

(i) C is generated, as a C∗-tensor category with conjugates, by one object;
(ii) C is generated by a finite number of objects;

(iii) C is infinitely generated.
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(i) Assume C is generated by one object K , so every object of C is iso-
morphic to a subobject of a tensor product of copies of K and an object K̄

conjugate to K . Let (R′, R̄′) be a solution of the conjugate equations for K

and K̄ . Then letting H = K ⊕ K̄ and R = R′ ⊕ R̄′, considered as a morphism
C → H ⊗H , we have (R∗ ⊗ ι)(ι⊗R) = ι, so we are back to the case covered
by Theorem 1.1.

(ii) The case when C is generated by a finite number of objects H1, . . . , Hn

is not much different from (i), as then C is generated by H1 ⊕ . . . ⊕ Hn.

(iii) For general C , choose a generating set F in C and let E be the family
of finite subsets of F ordered by inclusion. For each E ∈ E let CE be the
full rigid C∗-tensor subcategory of C generated by the finite set of objects in
E. By the previous case, for each subcategory CE we get a compact quantum
group GE with representation category CE . Moreover, if E ⊂ E′, then, since
CE ⊂ CE′ , by the uniqueness part of Theorem 1.1, the quantum group GE is
a quotient of GE′ , that is, we have an embedding C[GE] ↪→ C[GE′ ] of Hopf
∗-algebras. Then C[G] is defined as the inductive limit of the Hopf ∗-algebras
C[GE].

In the following example we can see how to recover the free unitary quantum
group following the procedure explained in point (i) of the above.

Example 4.2 (Free Unitary quantum group). We denote by C[U+
Q ] the

universal unital ∗-algebra generated by the entries of matrices V = (vij )i,j
and V̄ = (v̄ij )i,j such that V and V̄ are unitary with involution defined by
V ∗ = QtV̄ t (Q−1)t and V̄ ∗ = (Q−1)∗V tQ∗, for an invertible n by n matrix
Q. The algebra C[U+

Q ] is a Hopf ∗-algebra with comultiplication �(vij ) =∑
k vik ⊗ vkj and U+

Q is known in literature as the free unitary quantum group.

We wish to prove the equivalence between the representation category of
the free unitary quantum group and a concrete C∗-tensor category having cer-
tain properties. More specifically, consider the Hilbert space K = Cn and its
complex conjugate K̄ . Let CQ be the smallest collection of operators between
tensor powers of H := K ⊕ K̄ , as in Theorem 1.1, containing the operator
R:C → H⊗2 such that (R∗⊗ι)(ι⊗R) = ι, and the projection p: K⊕K̄ → K .
The operator R is equal to (ι ⊗ F)r for F ∈ GL2(Mn(C)) with entries
F11 = F22 = 0, F12 = Q̄−1 and F21 = Q, where Q̄ is the matrix whose
coefficients are the complex conjugates of the entries of Q.

We claim that HomU+
Q
(H⊗k, H⊗�) = CQ(k, �) for all k, � ≥ 0. We show

thatC[U+
Q ] ∼= A/I , where I is the ideal generated by slice maps (ω⊗ι)

(
(T ⊗

1)U⊗k − U⊗�(T ⊗ 1)
)
, for T ∈ CQ(k, �) and ω ∈ B(H⊗k, H⊗�)∗. The claim

will then follow from Theorem 1.1. By definition, C[U+
Q ] can be written as
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A/L where L is the ideal generated by the relations

UF tUt(F−1)t = 1, F tU t (F−1)tU = 1, U12 = 0, U21 = 0.

We already know that the ideal I contains slices of the first two relations, since
we showed in Lemma 2.1 that they correspond to the slice maps

(ω1,ij ⊗ ι)
(
(R ⊗ ι)−U⊗2(R ⊗ ι)

)
i,j

, (ωij,1 ⊗ ι)
(
(R∗ ⊗ ι)U⊗2 − (R∗ ⊗ ι)

)
i,j

.

The other two relations correspond to (ωij ⊗ ι)
(
(p⊗ ι)U −U(p⊗ ι)

)
i,j

. Hence
L ⊆ I . The opposite inclusion follows analogously to the second part of the
proof of Lemma 2.1.
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