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PENCILS AND NETS ON CURVES ARISING FROM
RANK 1 SHEAVES ON K3 SURFACES

NILS HENRY RASMUSSEN

Abstract
Let S be a K3 surface, C a smooth curve on S with OS(C) ample, andA a base-point free g2

d on C
of small degree. We use Lazarsfeld-Mukai bundles to prove thatA is cut out by the global sections
of a rank 1 torsion-free sheaf G on S. Furthermore, we show that c1(G) with one exception is
adapted to OS(C) and satisfies Cliff(c1(G)|C) ≤ Cliff(A), thereby confirming a conjecture posed
by Donagi and Morrison. We also show that the same methods can be used to give a simple proof
of the conjecture in the g1

d case.
In the final section, we give an example of the mentioned exception where h0(C, c1(G)|C) is

dependent on the curve C in its linear system, thereby failing to be adapted to OS(C).

1. Introduction

In the past 30 years, one central problem in the study of the existence of grd ’s on
smooth curves has been to find connections between sheaves on K3 surfaces S
and linear systems on curvesC lying onS. This started with Lazarsfeld [10] and
Tyurin [13] independently introducing vector-bundles EC,A on S, depending
on a smooth curve C and base-point free complete linear system A on C,
providing much information on the geometry of the curve C and existence of
other linear systems on the curve.

These vector-bundle techniques have given grounds for many results.
Among these, Green and Lazarsfeld [6] proved in 1987 that the Clifford index
is constant for all smooth curves C in a linear system on a K3 surface, and
that it is maximal (i.e., equal to �(g − 1)/2�) if the Picard group is gener-
ated by OS(C). In 1995, Ciliberto and Pareschi [3] proved that the gonality is
constant for all smooth curves in an ample linear system on a K3 surface. Knut-
sen [8] proved that this is also true for non-ample linear systems, except for
one particular case. Furthermore, he proved that there exist only two examples
of exceptional curves. Among other notable results, Aprodu and Farkas [1]
proved in 2011 that the Green conjecture is satisfied for all smooth curves on
K3 surfaces. They also found the exact dimension of the g1

d ’s for the general
curves in a linear system.
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Lelli-Chiesa [12] proved a conjecture posed by Donagi and Morrison [4],
in the case of K3 surfaces without (−2) curves, d ≤ g − 1 and Cliff(A) =
Cliff(C). The conjecture is stated as follows:

Conjecture 1.1 (Donagi-Morrison [4]). Suppose C is a smooth curve on
a K3 surface S, and let A be a base-point free complete grd on C such that
ρ(g, r, d) < 0. Then there exists a line bundleD on S, adapted to OS(C), such
that A ≤ D|C and Cliff(D|C) ≤ Cliff(A).

Here, the Clifford index of a line bundle A on a smooth curve C is defined
as Cliff(A) := deg(A)− 2(h0(C,A)− 1). We also mention that Cliff(C) :=
min{Cliff(A) | h0(C,A), h1(C,A) ≥ 2} (but where Cliff(C) is defined to
be 0 for hyperelliptic curves of genus 2 or 3, and 1 for trigonal curves of
genus 3). The value ρ(g, r, d) is the Brill-Noether number and is defined as
ρ(g, r, d) := g−(r+1)(g−d+r). A line bundleD on S is said to be adapted
to the line bundle L if

(i) h0(S,D) ≥ 2 and h0(S, L⊗D∨) ≥ 2, and

(ii) h0(C,D|C) is independent of the curve C ∈ |L|s ,
where |L|s denotes smooth curves in |L|.

The conjecture was proved in [4] for the case of g1
d ’s, and basically involved

proving that c1 of the cokernel of the maximal destabilising sequence of EC,A
satisfies the conditions of the line bundleD in the conjecture, with the exception
of one special case.

Part of the conjecture was also proved by Lelli-Chiesa in [11] for the case
of g2

d ’s on curves on maximal gonality and Clifford dimension 1. There, the
idea was to prove that the kernel of the maximal destabilising sequence of EC,A
can be assumed to be of rank 1, and that the determinant of the cokernel is the
desired line bundle D of the conjecture.

In the proof of our result, we use similar ideas. The main result states that the
divisors in base-point free complete g2

d ’s for small d are equal to global sections
of torsion-free sheaves of rank 1 on S restricted to C. The torsion-free sheaves
arise naturally from a maximal destabilising sequence of FC,A = E ∨

C,A, and c1

of these sheaves satisfy the conditions onD of the conjecture, similar to what
is done in Donagi-Morrison’s and Lelli-Chiesa’s proofs.

Our main result is the following:

Theorem 1.2. Let S be any K3 surface, and letL be an ample line-bundle on
S. If C ∈ |L| is smooth and A is a base-point free complete g2

d on C satisfying
d ≤ 1

6L
2, then the following is satisfied:

(a) there exist a linear system |D| on S and a finite subscheme ξ ⊂ S such
that every divisor in |A| is equal to an element in |D⊗ Iξ | restricted to
C, where Iξ is the ideal sheaf of ξ .
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Suppose furthermore that there do not exist an elliptic pencil E and a (−2)
curve� satisfying both conditionsA = E⊗2

|C and (L⊗E⊗(−2)).� = −2. Then:

(b) the line bundle D found in (a) is adapted to L; and

(c) Cliff(D|C) ≤ Cliff(A).

Remark 1.3. In the case where there exist an elliptic pencil E and a (−2)
curve � satisfying A = E⊗2

|C and (L ⊗ E⊗(−2)).� = −2, we can construct

examples whereh0(C,E⊗2
|C ) is dependent on the curveC in |L|s . See Section 3.

The tools used in the proof of Theorem 1.2, can also be used to give a simple
proof of Donagi and Morrison’s result for the g1

d case [4, Theorem 5.1’].
Here, we avoid the special case that was considered in the original proof.
Furthermore, as in Theorem 1.2, we also here prove that all divisors in |A|
are equal to the restriction to C of the global sections of a rank-1 torsion-free
sheaf on S.

Theorem 1.4. Let |L| be any base-point free linear system on a K3 surface
S. If C ∈ |L| is smooth and A is a base-point free complete g1

d on C satisfying
ρ(g, 1, d) < 0, then the following is satisfied:

(a) there exists a linear system |D| on S and a finite subscheme ξ ⊂ S such
that every divisor in |A| is equal to an element in |D⊗ Iξ | restricted to
C, where Iξ is the ideal sheaf of ξ ;

(b) the line bundle D found in (a) is adapted to L; and

(c) Cliff(D|C) ≤ Cliff(A).

We will be working in characteristic 0 throughout this paper.

2. Proof of theorem

The Lazarsfeld-Mukai vector bundles are defined as follows: given a smooth
curve C of genus g on S and a base-point free, complete grd A on C, the
vector-bundle FC,A on S is defined as the kernel of the evaluation morphism
H 0(C,A)⊗ OS → A → 0. The bundle has the following properties:

• rk(FC,A) = r + 1,

• det(FC,A) = OS(−C),
• c2(FC,A) = d,

• h0(S,FC,A) = h1(S,FC,A) = 0,

• χ(S,FC,A) = 2−2ρ(g, r, d), where ρ(g, r, d) = g−(r+1)(g−d+r)
is the Brill-Noether number,

• the dual, F ∨
C,A, is globally generated away from a finite set.



200 N. H. RASMUSSEN

Note that if ρ(g, r, d) < 0, then 2h0(S,FC,A ⊗ F ∨
C,A) ≥ χ(S,FC,A) ≥ 4,

and so FC,A is then non-simple, and hence non-stable.
We will for the remainder of this paper – except in the proof of Theorem 1.4

– assume that A is a base-point free, complete g2
d on a smooth curve C ∈ |L|

withL ample and d ≤ 1
6L

2. By [7, Theorem 3.4.1], FC,A is then unstable, and
there thus exists a maximal destabilising sequence

0 −→ M −→ FC,A −→ N −→ 0 (1)

such that M is locally free, N is torsion-free and μL-semistable, and
c1(M).L > − rk(M) 1

3L
2.

In the statements that follow, we will also be needing the dualisation of this
sequence, which is

0 −→ N∨ −→ F ∨
C,A −→ M̃ −→ 0, (2)

where M̃ is torsion-free and satisfies M̃∨ = M . Since F ∨
C,A is globally gener-

ated away from a finite set, the same applies for M̃ . This sequence is maximal
destabilising for F ∨

C,A, and so M̃ must be μL-semistable.
The following lemma is needed for the proof of Proposition 2.2, which

(among other things) states that we can assume the rank of M to be 2. This is
the most important step for the proof of Theorem 1.2.

Lemma 2.1. LetA,C andL be as above, and consider the maximal destabil-
ising sequence (1) of FC,A. If rk(M) = 1, then M.c1(N) ≥ 0.

Proof. Suppose M.c1(N) = M∨.c1(N
∨) < 0.

We dualise the sequence (1), yielding

0 −→ N∨ −→ F ∨
C,A −→ M∨ ⊗ Iη −→ 0,

where Iη is the ideal sheaf of a 0-dimensional subscheme η. Since F ∨
C,A

is globally generated away from a finite set, then so is M∨, and it follows
that a sufficient condition for M.c1(N) = M∨.c1(N

∨) to be ≥ 0 is that
h0(S, c1(N

∨)) ≥ 1.
Now, sinceM.L > − 1

3L
2 andM⊗c1(N) ∼= L∨, then c1(N).L < − 2

3L
2 <

0, and so it suffices to show that c1(N)
2 ≥ 0, since it then follows that either

c1(N) or c1(N
∨) must be effective, and we see that it must be c1(N

∨).
Now, since we have found that c1(N).L < − 2

3L
2, then c1(N

∨).L > 2
3L

2.
This gives us the inequality c1(N

∨)2 + c1(N
∨).M∨ = c1(N

∨).L > 2
3L

2. And
since we are assuming that c1(N

∨).M∨ < 0, it follows that c1(N
∨)2 > 0.

The result follows.
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Proposition 2.2. Let A, C and L be as above, and let (1) be a maximal
destabilising sequence of FC,A. Then rk(M) = 2; c1(M)

2 ≥ 0; c2(M̃) ≥ 0,
where M̃ is as in (2); and c2(M) ≥ 0.

Proof. Suppose rk(M) = 1. ThenN is semistable of rank 2, and so by [7,
Theorem 3.4.1], c2(N) ≥ 1

4c1(N)
2. Furthermore, M.L > − 1

3L
2, and so

c1(N).L < − 2
3L

2. From (1), we hence get c2(FC,A) ≥ M.c1(N)+ 1
4c1(N)

2 =
1
4c1(N)(c1(N) + 4M) = 1

4c1(N)(−L + 3M) > 2
12L

2 + 3
4c1(N).M , and by

Lemma 2.1, this is ≥ 1
6L

2. Since c2(FC,A) = deg(A), which was assumed to
be ≤ 1

6L
2, this gives the desired contradiction.

To prove the first two inequalities of the statement, we consider (2) and
note that since M̃ is globally generated away from a finite set, then the same
must apply for c1(M̃) = c1(M

∨), and so c1(M)
2 = c1(M

∨)2 ≥ 0. By [7,
Theorem 3.4.1], we must have c2(M̃) ≥ 0 as a consequence.

We now prove the last statement. SinceM∨ is globally generated away from
a finite set, we can inject an effective line-bundleD1 intoM∨, assume that the
injection is saturated, and get

0 −→ D1 −→ M∨ −→ D2 ⊗ Iη −→ 0,

whereη is a possibly empty zero-dimensional subscheme andD2 a line-bundle.
SinceM∨ is globally generated away from a finite set, thenD2 is also globally
generated (actually everywhere since it is base-component free). But then,
D1.D2 ≥ 0, and dualising, we see that c2(M) ≥ 0.

In the proof of part (c) of Theorem 1.2, we will need the following result.

Proposition 2.3. Suppose D1 and D2 are two divisors on a K3 surface,
and suppose D2

2 > 0. Then D2
1D

2
2 ≤ (D1.D2)

2, with equality if and only if
(D1.D2)D1 ∼ D2

1D2.

Proof. This follows from the Hodge Index Theorem (see e.g. [2, Corol-
lary 2.16]) and [5, Chapter 1, Exercise 10], and using that numeric and linear
equivalence are the same for divisors on a K3 surface.

We now give the proof of Theorem 1.2.

Proof of Theorem 1.2. We begin by proving part (a) of the theorem.
Let A, C and L be as in the theorem, and let FC,A be the associated

Lazarsfeld-Mukai bundle. Since deg(A) ≤ 1
6L

2, it follows from [7, The-
orem 3.4.1] that FC,A is unstable, and so we obtain a maximal destabilising
sequence (1).
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The injection M ↪→ FC,A can be composed with FC,A ↪→ O⊕3
S , yielding

the following diagram, where G is the cokernel:

0−−−−−→ M −−−−−→ O⊕3
S

ẽv−−−−→ Gφ −−−−→ 0

0 −−−−→ FC,A −−−−→ O⊕3
S

ev−−−−→ A −−−−→ 0

(3)

By the snake lemma, ker(φ) ∼= N , and since any torsion element of G

must map to 0 in A and N is torsion-free, it follows that G is torsion-free.
Since rk(M) = 2, by Proposition 2.2, we have rk(G) = 1, and so it follows
that G = D ⊗ Iξ , where D = c1(M

∨) and Iξ is the ideal sheaf of a possibly
empty finite subscheme ξ . Furthermore, φ is injective on global sections, since
h0(S,N) = 0 (proof: If h0(S,N) > 0, then – since rk(N) = 1 – we can write
N ∼= N ′ ⊗Iζ where Iζ is the ideal sheaf of a possibly empty finite subscheme
ζ , and where N ′ is an effective line bundle. But then c1(N) = N ′.L ≥ 0,
contradicting (1) being a maximal destabilising sequence).

It is clear thath0(S,M) = 0 sinceh0(S,FC,A) = 0, and soh0(S,G) ≥ 3 =
h0(C,A). Sinceφ is injective on global sections, this means that h0(S,G) = 3,
and so each global section of A comes from a unique global section of G . The
map φ is an element of Hom(D ⊗ Iξ , A) = Hom(Iξ , A ⊗ D∨), implying
that either A ∼= D|C ⊗ Iξ ′ , with ξ ′ = ξ ∩ C, or h0(C,A) > h0(C,D ⊗ Iξ ′).
However, we have h0(C,A) = h0(S,D ⊗ Iξ ), and having h0(S,D ⊗ Iξ ) >

h0(C,D⊗ Iξ ′) would imply that h0(S,D⊗ OS(−C)) > 0, which contradicts
that c1(M).L > − 2

3L
2.

We conclude that A ∼= D|C ⊗ Iξ ′ , and that every divisor in |A| comes from
restricting divisors in |D| vanishing on ξ .

Proof of part (b): We recall thatD is by definition adapted toL ifh0(S,D) ≥
2, h0(S, L⊗D∨) ≥ 2, and h0(C,D|C) is independent of the curve C in |L|s .

We already know that h0(S,D ⊗ Iξ ) = 3, so the first condition is clear.
To show that h0(S, L ⊗ D∨) ≥ 2, note that D ⊗ L∨ ∼= c1(N), which can-
not be effective since c1(N).L < − 1

3L
2. It thus suffices, by Riemann-Roch,

to show that c1(N
∨)2 ≥ 0. We have c1(N

∨)2 = (L − c1(M
∨)).c1(N

∨) =
L.c1(N

∨) − c1(M
∨).c1(N

∨) > 1
3L

2 − c1(N
∨).c1(M

∨). Sequence (2) gives
us 1

6L
2 ≥ c2(F

∨
C,A) = c1(M

∨).c1(N
∨) + c2(M̃) ≥ c1(M

∨).c1(N
∨) (using

Proposition 2.2 on c2(M̃), and that c2(N
∨) = 0 since it is locally free of rank

1), and so we can conclude that c1(N
∨)2 is nonnegative (actually, it is ≥ 1

6L
2).

We now show that h0(C,D|C) is independent of the curve C in |L|s . By
taking cohomology of the sequence 0 → D ⊗ L∨ → D → D|C → 0, we
see that it suffices to show that h1(S,D) = 0. We saw in Proposition 2.2 that
c1(M)

2, which is the same as D2, is nonnegative, and so h1(S,D) > 0 if and
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only if there exists a −2-curve � such that �.D < 0 orD = OS(nE) for some
positive integer n and where E is an elliptic curve (see [9, Theorem]). Since
M̃ is globally generated away from a finite set, then so isD (it is actually base-
point free, since it is on a K3 surface and has no base-components), and so no
−2-curve can intersect D negatively. In order to prove that h1(S,D) = 0, it
therefore suffices to prove that D2 > 0.

To prove that D2 > 0, the top row of (3) shows that 0 = c1(M).c1(G) +
c2(M)+ c2(G) = −c1(M)

2 + c2(M)+ c2(G). Since c2(M) ≥ 0 by Propos-
ition 2.2, then c1(M)

2 ≥ c2(G). We obviously have c2(G) ≥ 0, and we have
c1(M)

2 = 0 only if c2(G) = 0, and hence only if G = D, with h0(S,D) = 3.
However, in this case, A = D|C , and we clearly see thatD = E⊗2 where E is
an elliptic pencil.

We prove that h0(C ′, E⊗2
|C ′ ) = 3 for all C ′ ∈ |L|s under the conditions of

the theorem, given that there exists a curve C ∈ |L|s where h0(C,E⊗2
|C ) = 3.

Consider the exact sequence

0 −→ E⊗2 ⊗ L∨ −→ E⊗2 −→ E⊗2
|C −→ 0.

If we take cohomology, we see that since h1(S,E⊗2) = 1, h0(S,E⊗2) = 3,
h0(C,E⊗2

|C ) = 3, and h0(S,E⊗2 ⊗ L∨) = 0 (the latter as a consequence of
L.(E⊗2 ⊗ L∨) = L.(c1(M

∨) ⊗ L∨) < − 1
3L

2), we must have h1(S,E⊗2 ⊗
L∨) ≤ 1. If h1(S,E⊗2 ⊗L∨) = 0, then h0(C ′, E⊗2

|C ′ ) = 3 for allC ′ ∈ |L|s , and
we are done. If h1(S,E⊗2 ⊗L∨) = 1, then so is h1(S, L⊗E⊗(−2)), and by [9,
Theorem], we either have (L⊗ E⊗(−2))2 = 0 or there exists a (−2)-curve �
such that (L⊗ E⊗(−2)).� ≤ −2. From the condition E⊗2.L ≤ 1

6L
2, we have

(L ⊗ E⊗(−2))2 ≥ 2
3L

2 > 0, and so we are in the case where there exists a
(−2)-curve � such that (L⊗ E⊗(−2)).� ≤ −2.

We prove that (L⊗ E⊗(−2)).� = −2, thus contradicting the conditions of
the theorem. If (L⊗E⊗(−2)).� < −2, then �⊗2 must be a base component of
L⊗E⊗(−2). However, since h0(S, L⊗E⊗(−2)) = h0(S, L⊗E⊗(−2)⊗�⊗(−2)),
then χ(S, L⊗E⊗(−2)⊗�⊗(−2))−χ(S, L⊗E⊗(−2)) ≤ h1(S, L⊗E⊗(−2)) = 1
(noting that no h2 terms are positive because of the condition E⊗2.L ≤ 1

6L
2);

and Riemann-Roch gives us −2(L⊗E⊗(−2)).�−4 ≤ 1, which is impossible.

Proof of part (c):We have Cliff(A) = d − 4 = c2(FC,A) − 4. We must
prove that Cliff(D|C) is at most equal to this.

By definition, Cliff(D|C) = D.L−2(h0(C,D|C)−1). SinceD = c1(M
∨),

D.L = c1(M
∨).c1(N

∨) + c1(M
∨)2 and h0(C,D|C) ≥ h0(S,D) ≥

1
2c1(M

∨)2 + 2, this immediately gives us

Cliff(D|C) ≤ c1(M
∨).N∨ − 2 = c2(FC,A)− c2(M̃)− 2,
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where we recall that M̃ is as given in (2). We must prove that c2(M̃) ≥ 2.
Since M̃ is semistable, it follows from [7, Theorem 3.4.1] that c2(M̃) ≥

1
4c1(M̃)

2. In part (b) of the proof, we showed that c1(M̃)
2 > 0 (since D =

c1(M̃)) except for the case when D|C = A. Since the result follows trivially
in this latter case, we can assume that c1(M̃)

2 > 0, and so c2(M̃) ≥ 1. In the
following, we will suppose c2(M̃) = 1 (and hence c1(M̃)

2 ≤ 4) and show that
this yields a contradiction.

First note that, by taking cohomology of (2) and recalling thath1(S,F ∨
C,A)=

h2(S,F ∨
C,A) = 0, we see that h1(S, M̃) = h2(S, M̃) = 0 (we proved that

h2(S,N∨) = h0(S,N) = 0 in part (a)). Also, since M̃ is of rank 2 and glob-
ally generated away from a finite set, it must sit inside an exact sequence

0 −→ R1 ⊗ Iν −→ M̃ −→ R2 ⊗ Iη −→ 0, (4)

where Ri are line-bundles and ν and η finite subschemes. We can furthermore
assume that R1 is effective since M̃ has global sections, and R2 is globally
generated and R2 ⊗ Iη globally generated away from a finite set; and hence
R1.R2 ≥ 0, R2

2 ≥ 0, and length(ν), length(η) ≤ 1. Note that R1.R2 = 1 −
length(η)− length(ν). Also, [9, Theorem] gives us that h1(S, c1(M̃)) = 0.

Case: length(η) = 1. In this case, R1.R2 = length(ν) = 0, and since at
least one Ri must satisfy R2

i > 0, Proposition 2.3 yields that R2
1R

2
2 ≤ 0, and

so either R2
1 < 0, or R2

1 = 0. (If R2
1 > 0 with R2

2 = 0, we get R2 = OS ,
and then R2 ⊗ Iη has no global sections.) If R2

1 < 0, then also R1.c1(M̃) =
R1.(R1 ⊗ R2) < 0, and so R1 is a base component of c1(M̃). However, since
M̃ is globally generated away from a finite set, then so must c1(M̃), and we
get a contradiction.

IfR2
1 = 0, then (R1 ⊗R2)

2 = R2
2 , and putting OS(D1) = R2 and OS(D2) =

R1 ⊗R2, we get equality in Proposition 2.3, and so R1 = OS (since numerical
and linear equivalence is the same for line bundles on K3 surfaces). However,
in that case, taking cohomology of (4) gives us that h1(S, R2 ⊗Iη) = 1, while
cohomology of the sequence

0 −→ R2 ⊗ Iη −→ R2 −→ Oη −→ 0

yields h1(S, R2 ⊗Iη) = length(η)−h0(S, R2)+h0(S, R2 ⊗Iη)+h1(S, R2).
Sinceh1(S, R2) = 0 by [9, Theorem] andh0(S, R2⊗Iη) = h0(S, R2)−1 since
R2 is globally generated, this gives us h1(S, R2 ⊗ Iη) = length(η) − 1 = 0,
a contradiction.

Case: length(ν) = 1. This case is similar to the previous case. Here we
also have R1.R2 = 0, and in addition, length(η) = 0. Here, we cannot have
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R2
1 > 0 with R2

2 = 0, because we get R2 = OS , and dualising (4) would imply
that M̃∨ = M has global sections, a contradiction. So the two alternatives are
R2

1 < 0 or R2
1 = 0, as in the previous case. We cannot have R2

1 < 0 for the
same reason as in the previous case. If R2

1 = 0 with R2
2 > 0, we get R1 = OS

as in the previous case, and h1(S, R2) = 1. However, since R2 is globally
generated with positive self-intersection, this is impossible by [9, Theorem].

Case: length(ν) = length(η) = 0. In this case, R1.R2 = 1, and since
self intersection on a K3 surface is always even, Proposition 2.3 yields that
R2

1R
2
2 ≤ 0. If R2

1 < 0, then it must be ≤ −2, and we get R1.(R1 ⊗R2) ≤ −1,
and so R1 is a base component of c1(M̃), which contradicts c1(M̃) being
globally generated. It follows that R2

1 ≥ 0.
Having R2

1, R
2
2 ≥ 0 implies that (R2 ⊗ R∨

1 )
2 ≥ −2, and it follows from

Riemann-Roch that either R2 ≥ R1 or R1 ≥ R2. By semistability of M̃ , we
have R1.L ≤ 1

2c1(M̃).L = 1
2 (R1 ⊗ R2).L. If R1 � R2, this would give us

1
2 (R1 ⊗ R2).L � R1.L (by ampleness of L), which is impossible. It follows
that R2 ≥ R1.

Now, since R2 is globally generated, (R2 ⊗ R∨
1 ).R2 ≥ 0, and so R2

2 ≥ 2
and c1(M̃)

2 ≥ 4. Since we originally had c1(M̃)
2 ≤ 4 (as a consequence of

assuming c2(M̃) = 1), equality follows, together with R2
2 = 2 and R2

1 = 0.
By [9, Theorem], h1(S, R2) = 0, and since h2(S, M̃) = 0, we get h2(S, R1) =
0, and soR1 = E⊗n whereE is an elliptic pencil. SinceR1.R2 = 1, thenn = 1.

Note that since R2 ⊗ R∨
1 > 0 and M̃ is semistable, then M̃ must be a non-

split extension ofR1 andR2. As we saw above, the dimension of isomorphism
classes of non-trivial extensions is Ext1

OS
(R2, R1)− 1 = h1(S, R2 ⊗R∨

1 )− 1,
and so h1(S, R2 ⊗ R∨

1 ) > 0. By [9, Theorem], this implies that either R2
∼=

E⊗E′ whereE′ is an elliptic pencil satisfyingE′.E = 1; or (R2⊗R∨
1 ).� ≤ −2

for some (−2)-curve �, implying that R2 = E ⊗ B ⊗ �⊗m, where m ≥ 1 is
an integer and B ≥ 0 is a possibly trivial line bundle satisfying B.� ≥ 0.

If R2 = E ⊗ E′, then h1(S, R2 ⊗ R∨
1 ) = 0, a contradiction.

If R2 = E ⊗ B ⊗ �⊗m, note that since R1 = E, then 1 = R1.R2 =
E.B+mE.� ≥ mE.�. Since (R2 ⊗R1).� ≥ 0 (recall thatR1 ⊗R2 is globally
generated) and (R2 ⊗R∨

1 ).� ≤ −2, we getR1.� ≥ 1. However, sinceR2.� ≥
0 (recall that R2 is globally generated), this means that (R2 ⊗ R1).� ≥ 1
instead of ≥ 0, and we end up with R1.� ≥ 2. But then R2.R1 ≥ mE.� ≥ 2,
a contradiction.

We conclude that Cliff(D|C) ≤ Cliff(A).

Proof of Theorem 1.4. The proof of Theorem 1.4 uses exactly the same
techniques as in the proof of Theorem 1.2. We include it here for the sake of
completion.



206 N. H. RASMUSSEN

The condition on C and A are that ρ(g, 1, d) < 0. In this case, it follows
that FC,A is non-simple, and hence non-stable.

Part (a) is proved using the same diagram as in (3), the only difference
being that rk(M) = 1, and that M.L ≥ − 1

2L
2 and c1(N).L ≤ − 1

2L
2. The

latter inequality implies that N has no global sections, and so φ is injective on
global sections. It follows, from the arguments in the proof of Theorem 1.2,
that each global section of A comes from a unique global section of G , and
that the map must be the restriction map to C.

We now prove part (b): following the proof of Theorem 1.2(b), it is clear that
h0(S,D) ≥ 2. We have h0(S, L ⊗ D∨) = h0(S, c1(N)

∨). To prove that the
latter is ≥ 2, is suffices by Riemann-Roch to show that c1(N)

2 ≥ 0. We have
c1(N).(M⊗ c1(N)) = c1(N).L

∨ ≥ 1
2L

2 = 1
2M

2 +M.c1(N)+ 1
2c1(N)

2, and
so 1

2c1(N)
2 ≥ 1

2M
2. Since c1(M̃) = M∨ and M̃ is globally generated away

from a finite set, then M∨ is globally generated, and so M2 = (M∨)2 ≥ 0,
and we can conclude that h0(S, L⊗D∨) ≥ 2.

The argument thath0(C,D|C) is independent of the curveC in |L|s is similar
to the argument in the proof of Theorem 1.2. We see that no (−2)-curve can
intersectD negatively, and so h1(S,D) can be positive only ifD2 = 0. We see
that 0 = M.c1(G) + c2(G), and so D2 = M2 ≥ c2(G). Thus, D2 = 0 if and
only if G = D. As a consequence, h0(S,D) = 2, and so we must haveD = E

whereE is an elliptic pencil. In that case, h1(S,D) = 0, and we conclude that
h0(C,D|C) is independent of the curve C in |L|s .

To prove (c), we have Cliff(A) = d−2 = c2(FC,A)−2; and Cliff(D|C) =
D.L− 2(h0(C,D|C)− 1) ≤ c2(FC,A)− c2(M̃)− 2 ≤ c2(FC,A)− 2, and so
Cliff(D|C) ≤ Cliff(A), as desired.

3. An example of a linear system |L| where h0(C, E⊗2
|C ) depends on

the curve C in |L|s
In this section, we give an example of a case where h0(C,E⊗2

|C ) depends on the
curve C in |L|s , thus showing that the condition in Theorem 1.2 is necessary.
We first state the main result of this section before presenting a proposition
and lemma to help us with the construction.

Theorem 3.1. There exists a smooth K3 surface with an ample linear system
|L| and elliptic pencilE such that h0(C,E⊗2

|C ) depends on the curve C in |L|s .
In order to obtain this, we will need a smooth K3 surface containing a (−2)-

curve � in addition to an elliptic pencil E such that E.� = 2. Furthermore, to
ensure ampleness of L, which we will define later, we need all divisors of |E|
to be irreducible. We start by proving that such a K3 surface exists.
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Proposition 3.2. There exists a smooth K3 surface S in P5 which contains
a (−2)-curve � and an elliptic pencil E such that E.� = 2 and all divisors of
|E| are irreducible.

Proof. We will obtain the K3 surface S by intersecting three quadric hy-
persurfaces Q1, Q2 and Q3 in P5 such that the intersection is smooth and
irreducible, and where the hypersurfaces satisfy the following conditions:

• the quadric Q1 contains a linear three-space V1 and hence also a pencil
of three-spaces V2 cut out by all hyperplanes H containing V1;

• the three-space V1 intersects Q2 in the sum of two planes; and

• the intersections of Q3 with one of the planes in V1 ∩ Q2, and with
V2 ∩Q2 for all V2, are smooth and irreducible.

We begin the proof by arguing that the above conditions will indeed produce
line bundles with the desired properties. First of all, the intersection ofQ3 with
one of the planes in V1 ∩Q2 will be a plane conic, hence rational, and will be
our desired (−2)-curve�. The pencil of three-spacesV2 will give us the desired
elliptic pencilE, where clearly all divisors of |E|will be irreducible. The curves
in |E| are elliptic because they are complete intersections of two quadrics inP3,
and the adjunction formula then gives us that the canonical bundle is trivial. We
compute the intersectionE.� using the equality (E+�)2 = (H−�2)

2, where
�2 is the other plane conic in V1 ∩Q2 ∩Q3. We have (E + �)2 = 2E.� − 2,
and (H − �2)

2 = 2, using that H.�2 = 2. It follows that E.� = 2.
We now construct Q1, Q2 and Q3 with the above-listed properties. The

idea of the construction is to build cones over quadric surfaces Zi contained
in linear three-spaces Ji , with certain lines Ti as base loci.

We start with Q1. Let J1 be any linear three-space, and let T1 be a line that
avoids J1. Consider the linear system of quadric surfaces Z1 in J1. For given
Z1, we let Q1 be the span of planes connecting T1 with points on Z1. This
quadric fourfold is smooth outside of T1 because of the following: by blowing
up in T1 and considering the strict transform Q̃1 ofQ1, we see that by varying
Z1, the linear system we obtain in P5 × P3 is base-point free, since the pre-
image of T1 corresponds to planes connecting T1 with points in J1. Thus, the
general Q̃1 is smooth by Bertini’s theorem, and so the general Q1 is smooth
outside of T1. We choose the desired three-space V1 to be the span of T1 with
any line on Z1. The pencil of three-spaces V2 is, as previously mentioned, cut
out by considering hyperplanes H containing V1.

Before constructing Q2, we first choose a line T3 not contained in Q1 and
which avoids V1, and a linear three-space J3 avoiding T3 and chosen such that
Q1 ∩ J3 is smooth and irreducible (which can be done by considering general
J̃3 on Q̃1). These will be used to constructQ3 later. Note that T3 intersectsQ1

in two points.
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We now constructQ2: first, let T2 be a line intersecting V1 in a point; avoids
T1, T3 and the two V2’s that intersect T3; and is not contained in Q1. We next
consider all possible three-spaces J2 and note that all intersect V1 in at least
a line �. For each J2 and each line � in J2 ∩ V1, consider the linear system
of quadric surfaces Z2 containing �. The general J2 will intersect V1 in only
a single line �, and will avoid T2 and T1. For given J2 and Z2, we let Q2 be
given by the span of planes connecting T2 with points on Z2. The three-space
V1 then intersectsQ2 in two planes, where one is given by the span of V1 ∩ T2

and the line �. The general Q2 intersects J3 in a smooth irreducible surface,
since the various Q2 define a base-point free linear system on J3 and we can
thus apply Bertini’s theorem.

It now remains to constructQ3. We have already chosen T3 and J3. Consider
the linear system of quadric surfaces Z3 in J3, and note that the general Z3

intersectsQ2 in a smooth irreducible curve. We now constructQ3 just as with
Q1 and Q2 and connect planes between T3 and points in Z3. The resulting
linear system ofQ3’s cut out a base-point free linear system on the two planes
in V1 ∩ Q2. (Proof: let � be one of the planes. Since T3 avoids V1, it in
particular avoids �. Each point on � and T3 span a plane, which intersects
J3 in a point. We can then choose Z3 so that it avoids that point.) By Bertini’s
theorem, the general Q3 cuts out a smooth conic on each of the planes in
V1 ∩Q2.

To show that every element V2 ∩ Q2 ∩ Q3 of the elliptic pencil |E| is
irreducible, first consider theV2’s that avoidT3. It is then clear thatV2∩Q2∩Q3

is found by first intersecting Z3 with Q2, yielding a curve C in Z3, and then
considering the projection map to V2 by planes connecting points on C with
T3. This projection map is clearly an isomorphism, and so as long as C is
irreducible, then the corresponding curve in V2 is also irreducible. In the two
cases whenV2 intersectsT3, these three-spaces avoidT2, by howT2 was chosen,
and so we can consider the curve C ′ = Z2 ∩ Q3 and construct a similar
projection map using planes through T2. Since for generalQ2 andQ3 we have
Z2 ∩Q3 irreducible and Z3 ∩Q2 irreducible, we are done.

It remains to show that Q1 ∩Q2 ∩Q3 is smooth. First of all, by blowing
up in T1, we have already seen that the general Q̃1 is smooth. We now also

blow up in T2 and consider the linear system of ˜̃
Q2’s on ˜̃

Q1. Using the same
argument as in the T1 case (which is possible since the general J2 avoids T1),

we see that the linear system of ˜̃
Q2’s is also base-point free, and so the general

element defines a smooth divisor on ˜̃
Q1. We can chooseQ2 such that ˜̃

Q1 ∩ ˜̃
Q2

avoids T3, and so the linear system of ˜̃
Q3’s restricted to ˜̃

Q1 ∩ ˜̃
Q2 will then

also be base-point free, and the general ˜̃
Q1 ∩ ˜̃

Q2 ∩ ˜̃
Q3 is therefore smooth.
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The general Q1 ∩ Q2 ∩ Q3 avoids T1, T2 and T3, and is thus isomorphic to
˜̃
Q1 ∩ ˜̃

Q2 ∩ ˜̃
Q3. The result follows.

In the following, we will let S be a K3 surface as given in Proposition 3.2.
We now consider the line-bundleL = E⊗a⊗�⊗(a−1) where a ≥ 3 is an integer.
(We let a ≥ 7 if we wish the condition deg(A) ≤ 1

6L
2 from Theorem 1.2 to

be satisfied, but our example works for all a ≥ 3.) In the following lemma, we
prove that |L| contains smooth irreducible curves, and that L is ample.

Lemma 3.3. Let L and S be as above. Then:

(a) the linear system |L| contains smooth, irreducible curves; and

(b) the line-bundle L is ample.

Proof. In part (a), we prove that � is not a base component of |L|. Then,
since linear systems on K3 surfaces without base components are base-point
free, we can apply Bertini’s theorem to conclude smoothness for the gen-
eral curves. In order to prove that � is not a base component, we show that
h0(S, L) > h0(S, L⊗�∨). Using [9, Theorem], h1(S, L) = h1(S, L⊗�∨) =
0, and so h0(S, L) = 1

2L
2 + 2 and h0(S, L ⊗ �∨) = 1

2 (L ⊗ �∨)2 + 2 =
h0(S, L)−L.�− 1 = h0(S, L)− 3. It follows that the general element of |L|
is smooth and irreducible.

To prove (b), we first of all have L.E > 0 and L.� > 0. It is also clear
that L.D ≥ 0 for any other irreducible curveD, since |L| contains irreducible
curves. Suppose L.D = 0 for someD. SinceD can have neither E nor � as a
component, it follows thatE.D = �.D = 0. We now use Proposition 2.3 with
L = D2 and D = D1, and see that D2 ≤ 0. Suppose first that D2 = 0. Using
Proposition 2.3 again, this time with D2 = L and D1 = L ⊗ D∨, it follows
that D must be trivial.

Now suppose D2 < 0. Since D is irreducible, this means that D is a (−2)
curve. Consider the exact sequence

0 −→ E∨ −→ OS −→ OE′ −→ 0,

where E′ is a smooth elliptic curve in |E|. Tensor the sequence with D and
take cohomology. We have h1(S,D) = 0 and h1(E′,D|E′) = 1, since D|E′ is
trivial (recall that D.E = 0) and ωE′ ∼= OE′ . This gives us h2(S,D ⊗ E∨) =
h0(S,E⊗D∨) = 1, implying thatD < E, which contradicts Proposition 3.2.
We can thus conclude that L is ample.

We now prove the main result of this section. The idea is to consider divisors
in |E⊗2 ⊗ �| restricted to various curves C in |L|s and subtract � ∩ C. For
the general curves, we get the same linear system as from |E⊗2|. However, we
show that there exist other curves C ′ where divisors in |E⊗2 ⊗ �| without �
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as a component intersect C ′ exactly in the points �∩C ′, and the linear system
on C ′ thus obtains an extra dimension.

Proof of Theorem 3.1. Consider the exact sequence

0 −→ L∨ ⊗ E⊗2 −→ E⊗2 −→ E⊗2
|C −→ 0, (5)

where C is a curve in |L|s . We argue that h1(S, L∨ ⊗E⊗2) = 1. Note that this
equals h1(S, L⊗E⊗(−2)), and by [9, Theorem], h1(S, L⊗E⊗(−2)) > 0 while
h1(S, L⊗E⊗(−2)⊗�∨) = 0. By comparing χ(S, L⊗E⊗(−2))with χ(S, L⊗
E⊗(−2) ⊗ �∨), and using that h0(S, L⊗E⊗(−2)) = h0(S, L⊗E⊗(−2) ⊗ �∨),
we get that h1(S, L⊗ E⊗(−2)) = 1.

Now tensor (5) with� and take cohomology. We see thatH 0(S,E⊗2⊗�) ∼=
H 0(C,E⊗2 ⊗�|C), and we can therefore conclude that the linear system |E⊗2

|C |
is found precisely by considering divisors in |E⊗2 ⊗ �| that, restricted to C,
are zero in � ∩ C.

Note that divisors in |E⊗2 ⊗ �| that have � as a component will not cut
out any extra divisors in |E⊗2

|C | apart from those already cut out by |E⊗2| on
S. We must therefore consider curves in |E⊗2 ⊗ �| that do not have � as a
component, but still cut through C exactly where C intersects �.

We now have two situations: first of all, consider curves J in |E⊗2 ⊗ �|
that do not have � as a component. By considering the exact sequence

0 −→ E⊗2 −→ E⊗2 ⊗ �
ψ−→ (E⊗2 ⊗ �)|� −→ 0 (6)

and noting that h1(S,E⊗2) = 1 while h1(S,E⊗2 ⊗ �) = 0, we see that by
varying J , one dimension of divisors in |(E⊗2 ⊗ �)|�| = |O�(2)| is cut out.
The image of ψ cuts out a sub-linear system of |O�(2)| that we denote by �.
Since |E⊗2 ⊗ �| is base-component free and hence base-point free, it follows
that � is base-point free. Now consider the exact sequence

0 −→ L⊗ �∨ −→ L
τ−→ L|� −→ 0,

and note that h1(S, L⊗ �∨) = 0, by [9, Theorem]. We see here that |L| cuts
out the entire linear system |O�(2)|, and we can then consider the pre-image
of the sub-linear system �, which then is a sub-linear system � of |L| without
base-points along �. We prove that � is also base-point free everywhere else,
so that we can apply Bertini’s theorem and conclude that the general element
of � is smooth.

The proof is by induction on a in the expression L = E⊗a ⊗ �⊗(a−1),
where we start with a = 2. In this case, the curves in L and in |E⊗2 ⊗ �|
are the same, so the result is obvious. Now for each a ≥ 3, suppose there
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is a base-point free sub-linear system �′ of |E⊗(a−1) ⊗ �⊗(a−2)| consisting
of divisors that intersect � where the curves J intersect. Consider the linear
system |E ⊗ �|. By Riemann-Roch, it contains divisors that do not have � as
a component, and so it is clearly base-component free and hence base-point
free. Also, since (E⊗�).� = 0, the irreducible elements of this linear system
avoids �. Denote these elements by V . It then follows that �′ + V is a subset
of divisors in |E⊗a ⊗�⊗(a−1)| that intersect � where J intersects. It is clearly
base-point free, and so we can conclude that the sub-linear system � is also
base-point free. By Bertini’s theorem, it follows that the general element of �
is smooth.

We conclude that for general J ∈ |E⊗2 ⊗�| without � as a component, and
smooth curves C ′ in |L| that pass through J ∩ �, there is an effective divisor
J ∩C ′ −�∩C ′ ∈ |E⊗2

|C ′ | which is not cut out by a divisor in |E⊗2|. As a result,

we get h0(C ′, E⊗2
|C ′ ) = 4.

It remains to prove that there exists a smooth, irreducible curve C ′′ ∈ |L|
where the above situation does not occur. It then suffices to find a curve C ′′
such that no divisor J in |E⊗2 ⊗ �| satisfies J ∩ � = C ′′ ∩ �. This follows
by the exact sequence (6), where we saw that ψ is not surjective on global
sections and hence that the general divisors Z ∈ |(E⊗2 ⊗�)|�| are not cut out
by any of the divisors in |E⊗2 ⊗ �|. From the argument above, it follows that
any curveC ′′ that cuts out such a divisorZ on � will satisfy h0(C ′′, E⊗2

|C ′′) = 3.
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